×

Iterative splitting schemes for a soft material poromechanics model. (English) Zbl 07442763

Summary: We address numerical solvers for a poromechanics model particularly adapted for soft materials, as it generally respects thermodynamics principles and energy balance. Considering the multi-physics nature of the problem, which involves solid and fluid species, interacting on the basis of mass balance and momentum conservation, we decide to adopt a solution strategy of the discrete problem based on iterative splitting schemes. As the model is similar (but not equivalent to) the Biot poromechanics problem, we follow the abundant literature for solvers of the latter equations, developing two approaches that resemble the well known undrained and fixed-stress splits for the Biot model. A thorough convergence analysis of the proposed schemes is performed. In particular, the undrained-like split is developed and analyzed in the framework of generalized gradient flows, whereas the fixed-stress-like split is understood as block-diagonal \(L^2\)-type stabilization and analyzed by means of a relative stability analysis. In addition, the application of Anderson acceleration is suggested, improving the robustness of the split schemes. Finally, we test these methods on different benchmark tests, and we also compare their performance with respect to a monolithic approach. Together with the theoretical analysis, the numerical examples provide guidelines to appropriately choose what split scheme shall be used to address realistic applications of the soft material poromechanics model.

MSC:

74-XX Mechanics of deformable solids
76-XX Fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Biot, M., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 2, 155-164 (1941) · JFM 67.0837.01
[2] Biot, M., Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26, 2, 182-185 (1955) · Zbl 0067.23603
[3] Biot, M., General solutions of the equations of elasticity and consolidation for a porous material, J. Appl. Mech., 23, 1, 91-96 (1956) · Zbl 0074.19101
[4] Terzaghi, K., Theoretical Soil Mechanics (1948), John Wiley: John Wiley New York
[5] de Boer, R., Trends in Continuum Mechanics of Porous Media, Vol. 18 (2005), Springer Science & Business Media · Zbl 1085.74002
[6] Yang, M.; Taber, L., The possible role of poroelasticity in the apparent viscoelastic behavior of passive cardiac muscle, J. Biomech., 24, 7, 587-597 (1991)
[7] Taber, L.; Rew, P., Poroelastic plate and shell theories, Mech. Poroelast. Media, 323-337 (1996) · Zbl 0872.73023
[8] Goriely, A.; Geers, M.; Holzapfel, G.; Jayamohan, J.; Jérusalem, A.; Sivaloganathan, S.; Squier, W.; van Dommelen, J.; Waters, S.; Kuhl, E., Mechanics of the brain: Perspectives, challenges, and opportunities, Biomech. Model. Mechanobiol., 14, 5, 931-965 (2015)
[9] Nash, M.; Hunter, P., Computational mechanics of the heart. From tissue structure to ventricular function, J. Elasticity, 61, 1-3, 113-141 (2000) · Zbl 1071.74659
[10] Chabiniok, R.; Wang, V.; Hadjicharalambous, M.; Asner, L.; Lee, J.; Sermesant, M.; Kuhl, E.; Young, A.; Moireau, P.; Nash, M.; Chapelle, D.; Nordsletten, D., Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: Ventricular cardiac mechanics, Interface Focus, 6, 2 (2016)
[11] Chapelle, D.; Gerbeau, J.; Sainte-Marie, J.; Vignon-Clementel, I., A poroelastic model valid in large strains with applications to perfusion in cardiac modeling, Comput. Mech., 46, 1, 91-101 (2010) · Zbl 1301.92016
[12] Di Gregorio, S.; Fedele, M.; Pontone, G.; Corno, A.; Zunino, P.; Vergara, C.; Quarteroni, A., A computational model applied to myocardial perfusion in the human heart: from large coronaries to microvasculature, J. Comput. Phys., Article 109836 pp. (2020)
[13] Badia, S.; Quaini, A.; Quarteroni, A., Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction, J. Comput. Phys., 228, 21, 7986-8014 (2009) · Zbl 1391.74234
[14] Bukac, M.; Yotov, I.; Zakerzadeh, R.; Zunino, P., Effects of poroelasticity on fluid-structure interaction in arteries: A computational sensitivity study, Model. Simul. Appl., 14, 197-220 (2015)
[15] Armstrong, M.; Buganza Tepole, A.; Kuhl, E.; Simon, B.; Vande Geest, J., A finite element model for mixed porohyperelasticity with transport, swelling, and growth, PLoS One, 11, 4 (2016)
[16] Zakerzadeh, R.; Zunino, P., A computational framework for fluid-porous structure interaction with large structural deformation, Meccanica, 54, 1-2, 101-121 (2019)
[17] Coussy, O., Poromechanics (2004), John Wiley & Sons
[18] Bone poroelasticity, J. Biomech., 32, 3, 217-238 (1999)
[19] Hong, Q.; Kraus, J.; Lymbery, M.; Philo, F., Parameter-robust Uzawa-type iterative methods for double saddle point problems arising in Biot’s consolidation and multiple-network poroelasticity models, Math. Models Methods Appl. Sci., 30, 13, 2523-2555 (2020) · Zbl 1471.65143
[20] Hong, Q.; Kraus, J.; Lymbery, M.; Wheeler, M. F., Parameter-robust convergence analysis of fixed-stress split iterative method for multiple-permeability poroelasticity systems, Multiscale Model. Simul., 18, 2, 916-941 (2020) · Zbl 1447.65077
[21] Lee, J. J.; Piersanti, E.; Mardal, K.-A.; Rognes, M. E., A mixed finite element method for nearly incompressible multiple-network poroelasticity, SIAM J. Sci. Comput., 41, 2, A722-A747 (2019) · Zbl 1417.65162
[22] Piersanti, E.; Lee, J. J.; Thompson, T.; Mardal, K.-A.; Rognes, M. E., Parameter Robust Preconditioning by Congruence for Multiple-Network Poroelasticity, SIAM Journal on Scientific Computing, 43, 4, B984-B1007 (2021) · Zbl 07379629
[23] Chapelle, D.; Moireau, P., General coupling of porous flows and hyperelastic formulations - from thermodynamics principles to energy balance and compatible time schemes, Eur. J. Mech. B/Fluids, 46, 82-96 (2014) · Zbl 1297.76157
[24] Burtschell, B.; Chapelle, D.; Moireau, P., Effective and energy-preserving time discretization for a general nonlinear poromechanical formulation, Comput. Struct., 182, 313-324 (2017)
[25] Burtschell, B.; Moireau, P.; Chapelle, D., Numerical analysis for an energy-stable total discretization of a poromechanics model with inf-sup stability, Acta Math. Appl. Sin., 35, 1, 28-53 (2019) · Zbl 1428.65026
[26] Barnafi, N.; Zunino, P.; Dedè, L.; Quarteroni, A., Mathematical analysis and numerical approximation of a general linearized poro-hyperelastic model, Comput. Math. Appl. (2020)
[27] Settari, A.; Mourits, F., A coupled reservoir and geomechanical simulation system, SPE J., 3, 3, 219-226 (1998)
[28] Zienkiewicz, O.; Paul, D.; Chan, A., Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems, Internat. J. Numer. Methods Engrg., 26, 5, 1039-1055 (1988) · Zbl 0634.73110
[29] Mikelić, A.; Wheeler, M. F., Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17, 3, 455-461 (2013) · Zbl 1392.35235
[30] Castelletto, N.; White, J.; Tchelepi, H., Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics, Int. J. Numer. Anal. Methods Geomech., 39, 14, 1593-1618 (2015)
[31] Both, J. W.; Borregales, M.; Nordbotten, J. M.; Kumar, K.; Radu, F. A., Robust fixed stress splitting for Biot’s equations in heterogeneous media, Appl. Math. Lett., 68, 101-108 (2017) · Zbl 1383.74025
[32] Storvik, E.; Both, J. W.; Kumar, K.; Nordbotten, J. M.; Radu, F. A., On the optimization of the fixed-stress splitting for Biot’s equations, Internat. J. Numer. Methods Engrg., 120, 2, 179-194 (2019)
[33] Reverón, M. A.B.; Kumar, K.; Nordbotten, J. M.; Radu, F. A., Iterative solvers for Biot model under small and large deformations, Comput. Geosci., 1-13 (2020)
[34] Both, J. W.; Kumar, K.; Nordbotten, J. M.; Radu, F. A., Anderson accelerated fixed-stress splitting schemes for consolidation of unsaturated porous media, Comput. Math. Appl., 77, 6, 1479-1502 (2019) · Zbl 1442.65251
[35] Walker, H.; Ni, P., Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal., 49, 4, 1715-1735 (2011) · Zbl 1254.65067
[36] White, J.; Castelletto, N.; Tchelepi, H., Block-partitioned solvers for coupled poromechanics: A unified framework, Comput. Methods Appl. Mech. Engrg., 303, 55-74 (2016) · Zbl 1425.74497
[37] Phoon, K.; Toh, K.; Chan, S.; Lee, F., An efficient diagonal preconditioner for finite element solution of Biot’s consolidation equations, Internat. J. Numer. Methods Engrg., 55, 4, 377-400 (2002) · Zbl 1076.74558
[38] Haga, J.; Osnes, H.; Langtangen, H., Efficient block preconditioners for the coupled equations of pressure and deformation in highly discontinuous media, Int. J. Numer. Anal. Methods Geomech., 35, 13, 1466-1482 (2011)
[39] White, J.; Borja, R., Block-preconditioned Newton-Krylov solvers for fully coupled flow and geomechanics, Comput. Geosci., 15, 4, 647-659 (2011) · Zbl 1367.76034
[40] Lee, J.; Mardal, K.; Winther, R., Parameter-robust discretization and preconditioning of Biot’s consolidation model, SIAM J. Sci. Comput., 39, 1, A1-A24 (2017) · Zbl 1381.76183
[41] Adler, J.; Gaspar, F.; Hu, X.; Rodrigo, C.; Zikatanov, L., Robust block preconditioners for Biot’s model, (International Conference on Domain Decomposition Methods (2017), Springer), 3-16 · Zbl 1442.65342
[42] Kraus, J.; Lederer, P. L.; Lymbery, M.; Schöberl, J., Uniformly well-posed hybridized discontinuous Galerkin/hybrid mixed discretizations for Biot’s consolidation model, Comput. Methods Appl. Mech. Engrg., 384, Article 113991 pp. (2021) · Zbl 07415276
[43] Both, J. W.; Kumar, K.; Nordbotten, J. M.; Radu, F. A., The gradient flow structures of thermo-poro-visco-elastic processes in porous media (2019), arXiv e-prints, arXiv:1907.03134
[44] Fernández, M.; Moubachir, M., A Newton method using exact jacobians for solving fluid-structure coupling, Comput. Struct., 83, 2-3, 127-142 (2005)
[45] Quarteroni, A.; Formaggia, L.; Veneziani, A., Cardiovascular mathematics: Modeling and simulation of the circulatory system, Model. Simul. Appl., 1, 1-512 (2009)
[46] Bause, M.; Both, J. W.; Radu, F. A., Iterative coupling for fully dynamic poroelasticity, (Vermolen, F. J.; Vuik, C., Numerical Mathematics and Advanced Applications ENUMATH 2019 (2019), Springer International Publishing: Springer International Publishing Cham)
[47] Bause, M.; Radu, F.; Köcher, U., Space-time finite element approximation of the Biot poroelasticity system with iterative coupling, Comput. Methods Appl. Mech. Engrg., 320, 745-768 (2017) · Zbl 1439.74389
[48] Kim, J.; Tchelepi, H.; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: Drained and undrained splits, Comput. Methods Appl. Mech. Engrg., 200, 23, 2094-2116 (2011) · Zbl 1228.74106
[49] Kim, J.; Tchelepi, H. A.; Juanes, R., Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics, (SPE Reservoir Simulation Symposium (2009), Society of Petroleum Engineers) · Zbl 1228.74106
[50] Brun, M. K.; Ahmed, E.; Berre, I.; Nordbotten, J. M.; Radu, F. A., Monolithic and splitting solution schemes for fully coupled quasi-static thermo-poroelasticity with nonlinear convective transport, Comput. Math. Appl., 80, 8, 1964-1984 (2020) · Zbl 1451.74204
[51] Nocedal, J.; Wright, S. J., Numerical Optimization (2006), Springer: Springer New York, NY, USA · Zbl 1104.65059
[52] Beck, A., On the convergence of alternating minimization for convex programming with applications to iteratively reweighted least squares and decomposition schemes, SIAM J. Optim., 25, 1, 185-209 (2015) · Zbl 1358.90094
[53] Both, J. W., On the rate of convergence of alternating minimization for non-smooth non-strongly convex optimization in Banach spaces, Optim. Lett., 1-15 (2021)
[54] Vuong, A.; Yoshihara, L.; Wall, W., A general approach for modeling interacting flow through porous media under finite deformations, Comput. Methods Appl. Mech. Engrg., 283, 1240-1259 (2015) · Zbl 1423.76447
[55] Adler, J. H.; Gaspar, F. J.; Hu, X.; Rodrigo, C.; Zikatanov, L. T., Robust block preconditioners for Biot’s model, (International Conference on Domain Decomposition Methods (2017), Springer), 3-16 · Zbl 1442.65342
[56] Logg, A.; Mardal, K.; Wells, G., Automated Solution of Differential Equations By the Finite Element Method: The FENiCS Book, Vol. 84 (2012), Springer Science & Business Media · Zbl 1247.65105
[57] Alnæs, M.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M.; Wells, G., The FEniCS project version 1.5, Arch. Numer. Softw., 3, 100 (2015)
[58] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM · Zbl 1002.65042
[59] Shaw, J.; Izu, L.; Chen-Izu, Y., Mechanical analysis of single myocyte contraction in a 3-D elastic matrix, PLoS One, 8, 10, Article e75492 pp. (2013)
[60] Michler, C.; Cookson, A.; Chabiniok, R.; Hyde, E.; Lee, J.; Sinclair, M.; Sochi, T.; Goyal, A.; Vigueras, G.; Nordsletten, D., A computationally efficient framework for the simulation of cardiac perfusion using a multi-compartment Darcy porous-media flow model, Int. J. Numer. Methods Biomed. Eng., 29, 2, 217-232 (2013)
[61] Mardal, K.-A.; Winther, R., Uniform preconditioners for the time dependent stokes problem, Numer. Math., 98, 2, 305-327 (2004) · Zbl 1058.65101
[62] Mardal, K.-A.; Winther, R., Preconditioning discretizations of systems of partial differential equations, Numer. Linear Algebra Appl., 18, 1, 1-40 (2011) · Zbl 1249.65246
[63] Boon, W. M.; Kuchta, M.; Mardal, K.-A.; Ruiz-Baier, R., Robust Preconditioners for Perturbed Saddle-Point Problems and Conservative Discretizations of Biot’s Equations Utilizing Total Pressure, SIAM Journal on Scientific Computing, 43, 4, B961-B983 (2021) · Zbl 07379628
[64] Hong, Q.; Kraus, J.; Lymbery, M.; Philo, F., A new framework for the stability analysis of perturbed saddle-point problems and applications (2021), arXiv:2103.09357
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.