×

Moving least-squares in finite strain analysis with tetrahedra support. (English) Zbl 07511104

MSC:

74-XX Mechanics of deformable solids
65-XX Numerical analysis

Software:

GitHub
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Lee, N. S.; Bathe, K. J., Effects of element distortions on the performance of isoparametric elements, Internat J Numer Methods Engrg, 36, 3553-3576 (1993) · Zbl 0800.73465
[2] Peng, X.; Atroshchenko, E.; Kerfriden, P.; Bordas, S. P.A., Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth, Comput Methods Appl Math, 316, 151-185 (2017) · Zbl 1439.74370
[3] Bathe, K.-J., Finite element procedures (1996), Prentice-Hall
[4] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Internat J Numer Methods Engrg, 37, 229-256 (1994) · Zbl 0796.73077
[5] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math Comput, 37, 155, 141-158 (1981) · Zbl 0469.41005
[6] Rabczuk, T.; Belytschko, T.; Xiao, S. P., Stable particle methods based on Lagrangian kernels, Comput Methods Appl Math, 193, 1035-1063 (2004) · Zbl 1060.74672
[7] Simo, J. C., Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Comput Methods Appl Math, 99, 61-112 (1992) · Zbl 0764.73089
[8] Simo, J. C.; Hughes, T. J.R., Computational inelasticity (2000), Springer · Zbl 0934.74003
[9] Rossi, R.; Alves, M. K., On the analysis of an EFG method under large deformations and volumetric locking, Comput Mech, 39, 381-399 (2007) · Zbl 1178.74185
[10] Chen, J.-S.; Hillman, M.; Chi, S.-W., Meshfree methods: Progress made after 20 years, J Eng Mech ASCE, 143, 4, Article 04017001 pp. (2017)
[11] Cai, Y.; Zhuang, X.; Augarde, C., A new partition of unity finite element free from the linear dependence problem and possessing the delta property, Comput Methods Appl Math, 199, 1036-1043 (2010) · Zbl 1227.74065
[12] Boroomand, B.; Parand, S., Towards a general interpolation scheme, Comput Methods Appl Math, 381, Article 113830 pp. (2021) · Zbl 07414357
[13] Yu, S. Y.; Peng, M. J.; Cheng, H.; Cheng, Y. M., The improved element-free Galerkin for three-dimensional elastoplasticity problems, Eng Anal Bound Elem, 104, 215-224 (2019) · Zbl 1464.74225
[14] Bourantas, G.; Zwick, B. F.; Joldes, G. R.; Wittek, A.; Miller, K., Simple and robust element-free Galerkin method with almost interpolating shape functions for finite deformation elasticity, Appl Math Model, 96, 284-303 (2021) · Zbl 1481.74073
[15] Areias, P.; Rabczuk, T.; Ambrósio, J., Extrapolation and \(c_e\)-based implicit integration of anisotropic constitutive behavior, Internat J Numer Methods Engrg, 122, 1218-1240 (2021)
[16] Wriggers, P., Nonlinear finite element methods (2008), Springer · Zbl 1153.74001
[17] Huerta, A.; Méndez, S. F., Locking in the incompressible limit for the element-free Galerin method, Internat J Numer Methods Engrg, 51, 1361-1383 (2001) · Zbl 1065.74635
[18] Most, T.; Bucher, C., A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions, Struct Eng Mech, 21, 3, 315-332 (2005)
[19] Most, T.; Bucher, C., New concepts for moving least squares: An interpolation non-singular weighting function and weighted nodal least squares, Eng Anal Bound Elem, 32, 461-470 (2008) · Zbl 1244.74228
[20] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput Methods Appl Math, 139, 3-47 (1996) · Zbl 0891.73075
[21] Golub, G. J.; Van Loan, C. F., Matrix computations (1996), Johns Hopkins · Zbl 0865.65009
[22] Dehghan, M.; Abbaszadeh, M., Interpolating stabilized moving least squares (MLS) approximation for 2D elliptic interface problems, Comput Methods Appl Math, 328, 775-803 (2018) · Zbl 1439.82015
[23] Belytschko, T.; Liu, W. K.; Moran, B., Nonlinear finite elements for continua and structures (2000), John Wiley & Sons · Zbl 0959.74001
[24] Areias, P.; César de Sá, J. M.A.; Conceição António, C. A.; Fernandes, A. A., Analysis of 3D problems using a new enhanced strain hexahedral element, Internat J Numer Methods Engrg, 58, 1637-1682 (2003) · Zbl 1032.74661
[25] Areias, P.; Tiago, C.; Carrilho Lopes, J.; Carapau, F.; Correia, P., A finite strain raviart-thomas tetrahedron, Eur J Mech A Solids, 80, Article 103911 pp. (2020) · Zbl 1472.74195
[26] Mandel, J., Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques, Int J Solids Struct, 9, 725-740 (1973) · Zbl 0255.73004
[27] Eidel, B.; Gruttmann, F., Elastoplastic orthotropy at finite strains: multiplicative formulation and numerical implementation, Comput Mater Sci, 28, 732-742 (2003)
[28] Kröner, E., Allgemeine kontinuumstheorie der versetzungen und eigenspannungen, Arch Ration Mech Anal, 4, 273-334 (1960) · Zbl 0090.17601
[29] Lee, E. H., Elasto-plastic deformation at finite strains, J Appl Mech ASME, 36, 1-6 (1969) · Zbl 0179.55603
[30] Lubliner, J., Plasticity theory (1990), Macmillan · Zbl 0745.73006
[31] Gurtin, M. E., (An introduction to continuum mechanics. An introduction to continuum mechanics, Mathematics in science and engineering, vol. 158 (1981), Academic Press: Academic Press 111 Fifth Avenue, New York, New York 10003) · Zbl 0559.73001
[32] Mandel, J., Foundations of continuum thermodynamics, 283-304 (1974), MacMillan: MacMillan London, chapter Thermodynamics and Plasticity
[33] Chakrabarty, J., Theory of plasticity (2006), Butterworth-Heinemann: Butterworth-Heinemann Oxford, UK
[34] Caylak, I.; Mahnken, R., Stabilization of mixed tetrahedral elements at large deformations, Internat J Numer Methods Engrg, 90, 218-242 (2012) · Zbl 1242.74100
[35] Hill, R., A theory of yielding and plastic flow of anisotropic metals, Proc R Soc Lond, 193, 281-297 (1948) · Zbl 0032.08805
[36] Cazacu, O.; Barlat, F., A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals, Int J Plast, 20, 2027-2045 (2004) · Zbl 1107.74006
[37] Chen, L.; Zhang, J.; Zhang, H., Anisotropic yield criterion for metals exhibiting tension-compression asymmetry, Adv Appl Math Mech, 13, 701-723 (2021) · Zbl 07409134
[38] Puso, M. A.; Solberg, J., A stabilized nodally integrated tetrahedral, Internat J Numer Methods Engrg, 67, 841-867 (2006) · Zbl 1113.74075
[39] Areias P. Simplas. http://www.simplassoftware.com. Portuguese Software Association (ASSOFT) registry number 2281/D/17.
[40] Mathematica (2007)
[41] Korelc, J., Multi-language and multi-environment generation of nonlinear finite element codes, Eng Comput, 18, 4, 312-327 (2002)
[42] Areias, P., EFG MLS (2021), https://github.com/PedroAreiasIST/EFG
[43] Reese, S.; Wriggers, P.; Reddy, B. D., A new locking-free brick element technique for large deformation problems in elasticity, Comput Struct, 75, 291-304 (2000)
[44] Simo, J. C.; Armero, F.; Taylor, R. L., Improved versions of assumed strain tri-linear elements for 3D finite deformation problems, Comput Methods Appl Math, 110, 359-386 (1993) · Zbl 0846.73068
[45] Simo, J. C.; Armero, F., Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Internat J Numer Methods Engrg, 33, 1413-1449 (1992) · Zbl 0768.73082
[46] Arnold, D. N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, XXI, IV, 337-344 (1984) · Zbl 0593.76039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.