×

Graph-based homogenisation for modelling cardiac fibrosis. (English) Zbl 07525124

Summary: Fibrosis, the excess of extracellular matrix, can affect, and even block, propagation of action potential in cardiac tissue. This can result in deleterious effects on heart function, but the nature and severity of these effects depend strongly on the localisation of fibrosis and its by-products in cardiac tissue, such as collagen scar formation. Computer simulation is an important means of understanding the complex effects of fibrosis on activation patterns in the heart, but concerns of computational cost place restrictions on the spatial resolution of these simulations. In this work, we present a novel numerical homogenisation technique that uses both Eikonal and graph approaches to allow fine-scale heterogeneities in conductivity to be incorporated into a coarser mesh. Homogenisation achieves this by deriving effective conductivity tensors so that a coarser mesh can then be used for numerical simulation. By taking a graph-based approach, our homogenisation technique functions naturally on irregular grids and does not rely upon any assumptions of periodicity, even implicitly. We present results of action potential propagation through fibrotic tissue in two dimensions that show the graph-based homogenisation technique is an accurate and effective way to capture fine-scale domain information on coarser meshes in the context of sharp-fronted travelling waves of activation. As test problems, we consider excitation propagation in tissue with diffuse fibrosis and through a tunnel-like structure designed to test homogenisation, interaction of an excitation wave with a scar region, and functional re-entry.

MSC:

92Cxx Physiological, cellular and medical topics
35Qxx Partial differential equations of mathematical physics and other areas of application
35Bxx Qualitative properties of solutions to partial differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Sack, K. L.; Davies, N. H.; Guccione, J. M.; Franz, T., Personalised computational cardiology: patient-specific modelling in cardiac mechanics and biomaterial injection therapies for myocardial infarction, Heart Fail. Rev., 21, 6, 815-826 (2016)
[2] Corral-Acero, J.; Margara, F.; Marciniak, M.; Rodero, C.; Loncaric, F.; Feng, Y.; Gilbert, A.; Fernandes, J. F.; Bukhari, H. A.; Wajdan, A.; Martinez, M. V.; Santos, M. S.; Shamohammdi, M.; Luo, H.; Westphal, P.; Leeson, P.; DiAchille, P.; Gurev, V.; Mayr, M.; Geris, L.; Pathmanathan, P.; Morrison, T.; Cornelussen, R.; Prinzen, F.; Delhaas, T.; Doltra, A.; Sitges, M.; Vigmond, E. J.; Zacur, E.; Grau, V.; Rodriguez, B.; Remme, E. W.; Niederer, S.; Mortier, P.; McLeod, K.; Potse, M.; Pueyo, E.; Bueno-Orovio, A.; Lamata, P., The ‘digital twin’ to enable the vision of precision cardiology, Eur. Heart J. (Mar 2020)
[3] Carro, J.; Rodríguez, J. F.; Laguna, P.; Pueyo, E., A human ventricular cell model for investigation of cardiac arrhythmias under hyperkalaemic conditions, Philos. Trans. R. Soc., Math. Phys. Eng. Sci., 369, 1954, 4205-4232 (2011) · Zbl 1239.92045
[4] Grandi, E.; Pasqualini, F. S.; Bers, D. M., A novel computational model of the human ventricular action potential and ca transient, J. Mol. Cell. Cardiol., 48, 1, 112-121 (2010)
[5] O’Hara, T.; Rudy, Y., Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species, Am. J. Physiol., Heart Circ. Physiol., 302, 5, H1023-H1030 (2012)
[6] ten Tusscher, K. H.W. J.; Panfilov, A. V., Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions, Phys. Med. Biol., 51, 23, 6141-6156 (2006)
[7] Pathmanathan, P.; Bernabeu, M.; Niederer, S.; Gavaghan, D.; Kay, D., Computational modelling of cardiac electrophysiology: explanation of the variability of results from different numerical solvers, Int. J. Numer. Methods Biomed. Eng., 28, 8, 890-903 (2012)
[8] Sundnes, J.; Lines, G. T.; Cai, X.; Nielsen, B. F.; Mardal, K.-A.; Tveito, A., Computing the Electrical Activity in the Heart, vol. 1 (2006), Springer: Springer Berlin Heidelberg
[9] Whiteley, J., An efficient numerical technique for the solution of the monodomain and bidomain equations, IEEE Trans. Biomed. Eng., 53, 11, 2139-2147 (2006)
[10] Gokhale, T. A.; Asfour, H.; Verma, S.; Bursac, N.; Henriquez, C. S., Microheterogeneity-induced conduction slowing and wavefront collisions govern macroscopic conduction behavior: a computational and experimental study, PLoS Comput. Biol., 14, 7, Article e1006276 pp. (2018)
[11] ten Tusscher, K. H.; Panfilov, A. V., Influence of diffuse fibrosis on wave propagation in human ventricular tissue, Europace, 9, suppl_6, vi38-vi45 (2007)
[12] Campos, F. O.; Wiener, T.; Prassl, A. J.; dos Santos, R. W.; Sanchez-Quintana, D.; Ahammer, H.; Plank, G.; Hofer, E., Electroanatomical characterization of atrial microfibrosis in a histologically detailed computer model, IEEE Trans. Biomed. Eng., 60, 8, 2339-2349 (2013)
[13] Zahid, S.; Cochet, H.; Boyle, P. M.; Schwarz, E. L.; Whyte, K. N.; Vigmond, E. J.; Dubois, R.; Hocini, M.; Haïssaguerre, M.; Jaïs, P.; Trayanova, N. A., Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern, Cardiovasc. Res., 110, 3, 443-454 (2016)
[14] Ashikaga, H.; Arevalo, H.; Vadakkumpadan, F.; Blake, R. C.; Bayer, J. D.; Nazarian, S.; Zviman, M. M.; Tandri, H.; Berger, R. D.; Calkins, H.; Herzka, D. A.; Trayanova, N. A.; Halperin, H. R., Feasibility of image-based simulation to estimate ablation target in human ventricular arrhythmia, Heart Rhythm, 10, 8, 1109-1116 (2013)
[15] Keener, J. P., An eikonal-curvature equation for action potential propagation in myocardium, J. Math. Biol., 29, 7, 629-651 (1991) · Zbl 0744.92015
[16] Colli Franzone, P.; Guerri, L.; Rovida, S., Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations, J. Math. Biol., 28, 2, 121-176 (1990) · Zbl 0733.92006
[17] Colli Franzone, P.; Guerri, L., Spreading of excitation in 3-d models of the anisotropic cardiac tissue. i. validation of the eikonal model, Math. Biosci., 113, 2, 145-209 (1993) · Zbl 0786.92012
[18] Wellner, M.; Pertsov, A. M., Generalized eikonal equation in excitable media, Phys. Rev. E, 55, 6, 7656-7661 (1997)
[19] Hasan, A.; Khattab, A.; Islam, M. A.; Hweij, K. A.; Zeitouny, J.; Waters, R.; Sayegh, M.; Hossain, M. M.; Paul, A., Injectable hydrogels for cardiac tissue repair after myocardial infarction, Adv. Sci., 2, 11, Article 1500122 pp. (2015)
[20] Li, D. S.; Avazmohammadi, R.; Rodell, C. B.; Hsu, E. W.; Burdick, J. A.; Gorman, J. H.; Gorman, R. C.; Sacks, M. S., How hydrogel inclusions modulate the local mechanical response in early and fully formed post-infarcted myocardium, Acta Biomater., 114, 296-306 (2020)
[21] Song, X.; Wang, X.; Zhang, J.; Shen, S.; Yin, W.; Ye, G.; Wang, L.; Hou, H.; Qiu, X., A tunable self-healing ionic hydrogel with microscopic homogeneous conductivity as a cardiac patch for myocardial infarction repair, Biomaterials, 273, Article 120811 pp. (2021)
[22] Traverse, J. H.; Henry, T. D.; Dib, N.; Patel, A. N.; Pepine, C.; Schaer, G. L.; DeQuach, J. A.; Kinsey, A. M.; Chamberlin, P.; Christman, K. L., First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients, JACC: Basic Transl. Sci., 4, 6, 659-669 (2019)
[23] de Jong, S.; van Veen, T. A.B.; van Rijen, H. V.M.; de Bakker, J. M.T., Fibrosis and cardiac arrhythmias, J. Cardiovasc. Pharmacol., 57, 6, 630-638 (2011)
[24] Hansen, B. J.; Zhao, J.; Csepe, T. A.; Moore, B. T.; Li, N.; Jayne, L. A.; Kalyanasundaram, A.; Lim, P.; Bratasz, A.; Powell, K. A.; Simonetti, O. P.; Higgins, R. S.; Kilic, A.; Mohler, P. J.; Janssen, P. M.; Weiss, R.; Hummel, J. D.; Fedorov, V. V., Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts, Eur. Heart J., 36, 35, 2390-2401 (2015)
[25] Sánchez, C.; Bueno-Orovio, A.; Pueyo, E.; Rodríguez, B., Atrial fibrillation dynamics and ionic block effects in six heterogeneous human 3D virtual atria with distinct repolarization dynamics, Front. Bioeng. Biotechnol., 5 (May 2017)
[26] Nguyen, T. P.; Qu, Z.; Weiss, J. N., Cardiac fibrosis and arrhythmogenesis: the road to repair is paved with perils, J. Mol. Cell. Cardiol., 70, 83-91 (2014)
[27] Lawson, B. A.; Burrage, K.; Burrage, P.; Drovandi, C. C.; Bueno-Orovio, A., Slow recovery of excitability increases ventricular fibrillation risk as identified by emulation, Front. Physiol., 9 (Aug 2018)
[28] Durlofsky, L. J., Representation of grid block permeability in coarse scale models of randomly heterogeneous porous media, Water Resour. Res., 28, 7, 1791-1800 (1992)
[29] Costa, C. M.; dos Santos, R. W., Limitations of the homogenized cardiac monodomain model for the case of low gap junctional coupling, (Conf. Proc. IEEE Eng. Med. Biol. Soc. (2010), IEEE), 228-231
[30] Grandelius, E.; Karlsen, K. H., The cardiac bidomain model and homogenization, Netw. Heterog. Media, 14, 1, 173-204 (2019) · Zbl 1423.35200
[31] Hand, P. E.; Griffith, B. E.; Peskin, C. S., Deriving macroscopic myocardial conductivities by homogenization of microscopic models, Bull. Math. Biol., 71, 7, 1707-1726 (2009) · Zbl 1173.92007
[32] (Keener, J.; Sneyd, J., Mathematical Physiology (2009), Springer: Springer New York) · Zbl 1273.92018
[33] Richardson, G.; Chapman, S. J., Derivation of the bidomain equations for a beating heart with a general microstructure, SIAM J. Appl. Math., 71, 3, 657-675 (2011) · Zbl 1243.35015
[34] Davidović, A.; Coudière, Y.; Bourgault, Y., Image-based modeling of the heterogeneity of propagation of the cardiac action potential. Example of rat heart high resolution MRI, (Functional Imaging and Modelling of the Heart (2017), Springer International Publishing), 260-270
[35] Austin, T.; Trew, M.; Pullan, A., Solving the cardiac bidomain equations for discontinuous conductivities, IEEE Trans. Biomed. Eng., 53, 7, 1265-1272 (2006)
[36] Barone, A.; Carlino, M. G.; Gizzi, A.; Perotto, S.; Veneziani, A., Efficient estimation of cardiac conductivities: a proper generalized decomposition approach, J. Comput. Phys., 423, Article 109810 pp. (2020)
[37] Graham, L. S.; Kilpatrick, D., Estimation of the bidomain conductivity parameters of cardiac tissue from extracellular potential distributions initiated by point stimulation, Ann. Biomed. Eng., 38, 12, 3630-3648 (2010)
[38] Yang, H.; Veneziani, A., Estimation of cardiac conductivities in ventricular tissue by a variational approach, Inverse Probl., 31, 11, Article 115001 pp. (2015) · Zbl 1328.65201
[39] Cárdenes, R.; Sebastian, R.; Soto-Iglesias, D.; Berruezo, A.; Camara, O., Estimation of Purkinje trees from electro-anatomical mapping of the left ventricle using minimal cost geodesics, Med. Image Anal., 24, 1, 52-62 (2015)
[40] Palamara, S.; Vergara, C.; Faggiano, E.; Nobile, F., An effective algorithm for the generation of patient-specific Purkinje networks in computational electrocardiology, J. Comput. Phys., 283, 495-517 (2015) · Zbl 1352.92090
[41] Cardone-Noott, L.; Bueno-Orovio, A.; Mincholé, A.; Zemzemi, N.; Rodriguez, B., Human ventricular activation sequence and the simulation of the electrocardiographic QRS complex and its variability in healthy and intraventricular block conditions, Europace, 18, suppl_4, iv4-iv15 (2016)
[42] Grandits, T.; Gillette, K.; Neic, A.; Bayer, J.; Vigmond, E.; Pock, T.; Plank, G., An inverse eikonal method for identifying ventricular activation sequences from epicardial activation maps, J. Comput. Phys., Article 109700 pp. (2020)
[43] de Barros, B. G.; dos Santos, R. W.; Lobosco, M.; Alonso, S., Simulation of ectopic pacemakers in the heart: multiple ectopic beats generated by reentry inside fibrotic regions, BioMed Res. Int., 2015, 1-18 (2015)
[44] Wallman, M.; Smith, N. P.; Rodriguez, B., A comparative study of graph-based, eikonal, and monodomain simulations for the estimation of cardiac activation times, IEEE Trans. Biomed. Eng., 59, 6, 1739-1748 (2012)
[45] Jacquemet, V., An eikonal approach for the initiation of reentrant cardiac propagation in reaction-diffusion models, IEEE Trans. Biomed. Eng., 57, 9, 2090-2098 (2010)
[46] Neic, A.; Campos, F. O.; Prassl, A. J.; Niederer, S. A.; Bishop, M. J.; Vigmond, E. J.; Plank, G., Efficient computation of electrograms and ECGs in human whole heart simulations using a reaction-eikonal model, J. Comput. Phys., 346, 191-211 (2017)
[47] Wallman, M.; Smith, N.; Rodriguez, B., Estimation of activation times in cardiac tissue using graph based methods, (Functional Imaging and Modeling of the Heart (2011), Springer: Springer Berlin, Heidelberg), 71-79
[48] Sermesant, M.; Coudière, Y.; Moreau-Villéger, V.; Rhode, K. S.; Hill, D. L.G.; Razavi, R. S., A fast-marching approach to cardiac electrophysiology simulation for XMR interventional imaging, (Lecture Notes in Computer Science (2005), Springer: Springer Berlin, Heidelberg), 607-615
[49] Sermesant, M.; Konukog̃lu, E.; Delingette, H.; Coudière, Y.; Chinchapatnam, P.; Rhode, K. S.; Razavi, R.; Ayache, N., An anisotropic multi-front fast marching method for real-time simulation of cardiac electrophysiology, (Functional Imaging and Modelling of the Heart (2007), Springer: Springer Berlin, Heidelberg), 160-169
[50] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by simulated annealing, Science, 220, 4598, 671-680 (1983) · Zbl 1225.90162
[51] Bank, R. E., PLTMG: A Software Package for Solving Elliptic Partial Differential Equations (1998), Society for Industrial and Applied Mathematics · Zbl 0990.65500
[52] Lawson, B. A.J.; dos Santos, R. W.; Turner, I. W.; Bueno-Orovio, A.; Burrage, P.; Burrage, K., Homogenisation for the monodomain model in the presence of microscopic fibrotic structures (2020)
[53] Whitaker, S., The Method of Volume Averaging (1999), Springer: Springer Netherlands
[54] Gómez-Hernández, J. J., Simulation of block permeabilities conditioned upon data measured at a different scale, (Kovar, K., ModelCARE 90: Calibration and Reliability in Groundwater Modelling (1990), IAHS), 407-416
[55] Wu, X.; Efendiev, Y.; Hou, T. Y., Analysis of upscaling absolute permeability, Discrete Contin. Dyn. Syst., Ser. B, 2, 2, 185-204 (2002) · Zbl 1162.65327
[56] March, N. G.; Carr, E. J.; Turner, I. W., A fast algorithm for semi-analytically solving the homogenization boundary value problem for block locally-isotropic heterogeneous media, Appl. Math. Model., 92, 23-43 (2020) · Zbl 1481.74636
[57] Perego, M.; Veneziani, A., An efficient generalization of the Rush-Larsen method for solving electro-physiology membrane equations, Electron. Trans. Numer. Anal., 35, 234-256 (2009) · Zbl 1185.92005
[58] Oliveira, R. S.; Alonso, S.; Campos, F. O.; Rocha, B. M.; Fernandes, J. F.; Kuehne, T.; dos Santos, R. W., Ectopic beats arise from micro-reentries near infarct regions in simulations of a patient-specific heart model, Sci. Rep., 8, 1 (Nov 2018)
[59] Campos, F. O.; Shiferaw, Y.; dos Santos, R. W.; Plank, G.; Bishop, M. J., Microscopic isthmuses and fibrosis within the border zone of infarcted hearts promote calcium-mediated ectopy and conduction block, Front. Phys., 6, 57 (2018)
[60] Courtemanche, M.; Ramirez, R. J.; Nattel, S., Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model, Am. J. Physiol., Heart Circ. Physiol., 275, 1, H301-H321 (1998)
[61] Lawson, B. A.J.; Drovandi, C. C.; Cusimano, N.; Burrage, P.; Rodriguez, B.; Burrage, K., Unlocking data sets by calibrating populations of models to data density: a study in atrial electrophysiology, Sci. Adv., 4, 1 (Jan 2018)
[62] Sethian, J. A.; Vladimirsky, A., Fast methods for the eikonal and related Hamilton- Jacobi equations on unstructured meshes, Proc. Natl. Acad. Sci. USA, 97, 11, 5699-5703 (2000) · Zbl 0963.65076
[63] Grandits, T.; Effland, A.; Pock, T.; Krause, R.; Plank, G.; Pezzuto, S., Geasi: geodesic-based earliest activation sites identification in cardiac models
[64] Tomlinson, K. A., Finite element solution of an eikonal equation for excitation wavefront propagation in ventricular myocardium (2000), School of Engineering, The University of Auckland, Ph.D. thesis
[65] Hinderer, S.; Schenke-Layland, K., Cardiac fibrosis – a short review of causes and therapeutic strategies, Adv. Drug Deliv. Rev., 146, 77-82 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.