×

Sparse optimal control for a semilinear heat equation with mixed control-state constraints – regularity of Lagrange multipliers. (English) Zbl 1467.49016

Summary: An optimal control problem for a semilinear heat equation with distributed control is discussed, where two-sided pointwise box constraints on the control and two-sided pointwise mixed control-state constraints are given. The objective functional is the sum of a standard quadratic tracking type part and a multiple of the \(L^1\)-norm of the control that accounts for sparsity. Under a certain structural condition on almost active sets of the optimal solution, the existence of integrable Lagrange multipliers is proved for all inequality constraints. For this purpose, a theorem by Yosida and Hewitt is used. It is shown that the structural condition is fulfilled for all sufficiently large sparsity parameters. The sparsity of the optimal control is investigated. Eventually, higher smoothness of Lagrange multipliers is shown up to Hölder regularity.

MSC:

49K20 Optimality conditions for problems involving partial differential equations
49N10 Linear-quadratic optimal control problems
90C05 Linear programming
90C46 Optimality conditions and duality in mathematical programming
35K58 Semilinear parabolic equations
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] E. Casas, Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297-1327. · Zbl 0893.49017
[2] E. Casas, A review on sparse solutions in optimal control of partial differential equations. SEMA J. 74 (2017) 319-344. · Zbl 1391.35124 · doi:10.1007/s40324-017-0121-5
[3] E. Casas, The influence of the Tikhonov term in optimal control of partial differential equations. In Vol. 17 of SEMA SIMAI Springer Series (2018). · Zbl 1417.35212
[4] E. Casas, C. Clason and K. Kunisch, Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50 (2012) 1735-1752. · Zbl 1343.49048
[5] E. Casas, C. Clason and K. Kunisch, Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51 (2013) 28-63. · Zbl 1266.49037
[6] E. Casas, R. Herzog and G. Wachsmuth, Approximation of sparse controls in semilinear equations by piecewise linear functions. Numer. Math. 122 (2012) 645-669. · Zbl 1284.65074
[7] E. Casas, R. Herzog and G. Wachsmuth, Optimality conditions and error analysis of semilinear elliptic control problems with L^1 cost functional. SIAM J. Optim. 22 (2012) 795-820. · Zbl 1278.49026
[8] E. Casas, R. Herzog and G. Wachsmuth, Analysis of spatio-temporally sparse optimal control problems of semilinear parabolic equations. ESAIM: COCV 23 (2017) 263-295. · Zbl 1479.49047 · doi:10.1051/cocv/2015048
[9] E. Casas and K. Kunisch, Optimal control of semilinear elliptic equations in measure spaces. SIAM J. Control Optim. 52 (2014) 339-364. · Zbl 1306.90172
[10] E. Casas and K. Kunisch, Parabolic control problems in space-time measure spaces. ESAIM: COCV 22 (2016) 355-370. · Zbl 1343.49036 · doi:10.1051/cocv/2015008
[11] E. Casas and F. Tröltzsch, Second-order and stability analysis for state-constrained elliptic optimal control problems with sparse controls. SIAM J. Control Optim. 52 (2014) 1010-1033. · Zbl 1306.90173
[12] E. Casas and F. Tröltzsch, Optimal sparse boundary control for a semilinear parabolic equation with mixed control-state constraints. Control Cybern. 48 (2019) 89-124. · Zbl 1451.49024
[13] E. Casas and F. Tröltzsch, Sparse optimal control for the heat equation with mixed control-state constraints. Math. Control Relat. Fields 10 (2020) 471-491. · Zbl 1455.49013 · doi:10.3934/mcrf.2020007
[14] E. Casas, B. Vexler and E. Zuazua, Sparse initial data identification for parabolic PDE and its finite element approximations. Math. Control Relat. Fields 5 (2015) 377-399. · Zbl 1327.35131 · doi:10.3934/mcrf.2015.5.377
[15] E. Casasand E. Zuazua, Spike controls for elliptic and parabolic PDE. Systems Control Lett. 62 (2013) 311-318. · Zbl 1267.49005 · doi:10.1016/j.sysconle.2013.01.001
[16] C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM: COCV 17 (2011) 243-266. · Zbl 1213.49041 · doi:10.1051/cocv/2010003
[17] C. Clason and K. Kunisch, A measure space approach to optimal source placement. Comput. Optim. Appl. 53 (2012) 155-171. · Zbl 1258.49041
[18] C. Clason and A. Schiela, Optimal control of elliptic equations with positive measures. ESAIM: COCV 23 (2017) 217-240. · Zbl 1365.49005 · doi:10.1051/cocv/2015046
[19] E. Di Benedetto On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Ann. Scuola Sup. Pisa, Ser. I 13 (1986) 487-535. · Zbl 0635.35052
[20] A. Dmitruk, Maximum principle for the general optimal control problem with phase and regular mixed constraints. Comput. Math. Model. 4 (1993) 364-377. · Zbl 1331.49025 · doi:10.1007/BF01128760
[21] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin Heidelberg (1983). · Zbl 0562.35001
[22] R. Herzog, G. Stadler and G. Wachsmuth, Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50 (2012) 943-963. · Zbl 1244.49038
[23] A.D. Ioffe and V.M. Tihomirov, Theory of extremal problems. North-Holland Publishing Co., Amsterdam (1979). · Zbl 0407.90051
[24] K. Kunisch, K. Pieper and B. Vexler, Measure valued directional sparsity for parabolic optimal control problems. SIAM J. Control Optim. 52 (2014) 3078-3108. · Zbl 1326.49035
[25] C. Meyer and F. Tröltzsch, On an elliptic optimal control problem with pointwise mixed control-state constraints, In Recent Advances in Optimization, edited by A. Seeger. Proceedings of the 12th French-German-Spanish Conference on Optimization held in Avignon, September 20-24, 2004, volume 563 of Lecture Notes in Economics and Mathematical Systems. Springer-Verlag (2006). · Zbl 1194.49027
[26] K. Pieper and B. Vexler, A priori error analysis for discretization of sparse elliptic optimal control problems in measure space. SIAM J. Control Optim. 51 (2013) 2788-2808. · Zbl 1357.49121
[27] J.-P. Raymond and F. Tröltzsch, Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discr. Continu. Dyn. Syst. 6 (2000) 431-450. · Zbl 1010.49015 · doi:10.3934/dcds.2000.6.431
[28] A. Rösch and F. Tröltzsch, On regularity of solutions and Lagrange multipliers of optimal control problems for semilinear equations with mixed pointwise control-state constraints. SIAM J. Control Optim. 46 (2007) 1098-1115. · Zbl 1357.49093
[29] R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, volume 49 of Math. Surv. and Monogr. American Mathematical Society, Providence, RI (1997). · Zbl 0870.35004
[30] G. Stadler, Elliptic optimal control problems with L^1-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44 (2009) 159-181. · Zbl 1185.49031
[31] F. Tröltzsch, A minimum principle and a generalized bang-bang-principle for a distributed optimal control problem with constraints on the control and the state. ZAMM 59 (1979) 737-739. · Zbl 0425.49014 · doi:10.1002/zamm.19790591208
[32] F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, in Vol. 112. American Math. Society, Providence (2010). · Zbl 1195.49001
[33] F. Tröltzsch and D. Wachsmuth, On the switching behavior of sparse optimal controls for the one-dimensional heat equation. Math. Control Related Fields (MCRF) 8 (2018) 135-153. · Zbl 1407.49032 · doi:10.3934/mcrf.2018006
[34] G. Wachsmuth and D. Wachsmuth, Convergence and regularization results for optimal control problems with sparsity functional. ESAIM: COCV 17 (2011) 858-886. · Zbl 1228.49032 · doi:10.1051/cocv/2010027
[35] K. Yosida and E. Hewitt, Finitely additive measures. Trans. Am. Math. Soc. 72 (1952) 46-66. · Zbl 0046.05401
[36] J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979) 49-62. · Zbl 0401.90104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.