×

A DSA algorithm for mortality forecasting. (English) Zbl 1479.91318

Summary: Borrowing information from populations with similar structural mortality patterns and trajectories has been well recognized as an useful strategy to the mortality forecasting of a target population. This article presents a flexible framework for the selection of populations from a given candidate pool to assist a target population in mortality forecasting. The defining feature of the framework is the deletion-substitution-addition (DSA) algorithm, which is entirely data driven and versatile to work with any multiple-population model for mortality prediction. In numerical studies, the framework with an extended augmented common factor model is applied to the Human Mortality Database, and the superiority of the proposed framework is evident in mortality forecasting performance.

MSC:

91G05 Actuarial mathematics
91D20 Mathematical geography and demography
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Booth, H.; Maindonald, J.; Smith., L., Applying Lee-Carter under conditions of variable mortality decline, Population Studies, 56, 3, 325-36 (2002)
[2] Box, G. E. P.; Jenkins, G. M.; Reinsel, G. C.; Ljung, G. M., Time series analysis: Forecasting and control (2015), John Wiley & Sons
[3] Brouhns, N.; Denuit, M.; Vermunt., J. K., A Poisson log-bilinear regression approach to the construction of projected lifetables, Insurance: Mathematics and Economics, 31, 3, 373-93 (2002) · Zbl 1074.62524
[4] Cairns, A. J. G.; Blake, D.; Dowd., K., A 2-factor model for stochastic mortality with parameter uncertainty: Theory and calibration, Journal of Risk and Insurance, 73, 4, 687-718 (2006)
[5] Cairns, A. J. G.; Blake, D.; Dowd, K.; Coughlan, G. D.; Epstein, D.; Ong, A.; Balevich., I., A quantitative comparison of stochastic mortality models using data from England and Wales and the United States, North American Actuarial Journal, 13, 1, 1-35 (2009)
[6] Cairns, A. J. G.; Blake, D.; Dowd, K.; Coughlan, G. D.; Khalaf-Allah., M., Bayesian stochastic mortality modeling for 2 populations, ASTIN Bulletin, 41, 1, 29-59 (2011)
[7] Campbell, M., An integrated system for estimating the risk premium of individual car models in motor insurance, ASTIN Bulletin, 16, 2, 165-83 (1986)
[8] Currie, I. D.; Durban, M.; Eilers., P. H. C., Smoothing and forecasting mortality rates, Statistical Modeling, 4, 4, 279-98 (2004) · Zbl 1061.62171
[9] de Jong, P.; Tickle., L., Extending Lee-Carter mortality forecasting, Mathematical Population Studies, 13, 1, 1-18 (2006) · Zbl 1151.91742
[10] Diebold, F. X.; Mariano, R. S., Comparing predictive accuracy, Journal of Business and Economic Statistics, 13, 3 (1995)
[11] Dowd, K.; Cairns, A. J. G.; Blake, D.; Coughlan, G. D.; Khalaf-Allah., M., A gravity model of mortality rates for 2 related populations, North American Actuarial Journal, 15, 2, 334-56 (2011) · Zbl 1228.91032
[12] Gan, G.; Valdez., E. A., An empirical comparison of some experimental designs for the valuation of large variable annuity portfolios, Dependence Modeling, 4, 1 (2016) · Zbl 1382.91046
[13] Gan, G.; Valdez., E. A., Data clustering with actuarial applications, North American Actuarial Journal, 24, 2, 168-86 (2020) · Zbl 1454.91186
[14] Haberman, S.; Renshaw., A., A comparative study of parametric mortality projection models, Insurance: Mathematics and Economics, 48, 1, 35-55 (2011)
[15] Harvey, D.; Leybourne, S.; Newbold., P., Testing the equality of prediction mean squared errors, International Journal of Forecasting, 13, 2, 281-91 (1997)
[16] Hatzopoulos, P.; Haberman., S., A parameterized approach to modeling and forecasting mortality, Insurance: Mathematics and Economics, 44, 1, 103-23 (2009) · Zbl 1156.91394
[17] Hatzopoulos, P.; Haberman., S., A dynamic parameterization modeling for the age-period-cohort mortality, Insurance: Mathematics and Economics, 49, 2, 155-74 (2011) · Zbl 1218.91082
[18] Hatzopoulos, P.; Haberman., S., Common mortality modeling and coherent forecasts. an empirical analysis of worldwide mortality data, Insurance: Mathematics and Economics, 52, 2, 320-37 (2013) · Zbl 1284.91238
[20] Hyndman, R. J.; Booth, H.; Yasmeen., F., Coherent mortality forecasting: The product-ratio method with functional time series models, Demography, 50, 1, 261-83 (2013)
[21] Hyndman, R. J., and Khandakar., Y.2007. Automatic time series for forecasting: the forecast package for R. Number 6/07, Monash University, Department of Econometrics and Business Statistics, Clayton VIC, Australia.
[22] Hyndman, R. J.; Shahid Ullah., M., Robust forecasting of mortality and fertility rates: A functional data approach, Computational Statistics and Data Analysis, 51, 10, 4942-56 (2007) · Zbl 1162.62434
[23] Kleinow, T., A common age effect model for the mortality of multiple populations, Insurance: Mathematics and Economics, 63, 147-52 (2015) · Zbl 1348.91233
[24] Lee, R. D.; Carter., L. R., Modeling and forecasting U.S. mortality, Journal of the American Statistical Association, 87, 419, 659-71 (1992) · Zbl 1351.62186
[25] Lee, R. D.; Miller., T., Evaluating the performance of the Lee-Carter method for forecasting mortality, Demography, 38, 4, 537-49 (2001)
[26] Li, J. S.-H.; Hardy, M. R.; Tan., K. S., Uncertainty in mortality forecasting: An extension to the classical Lee-Carter approach, ASTIN Bulletin, 39, 1, 137-64 (2009) · Zbl 1203.91113
[27] Li, N.; Lee., R., Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method, Demography, 42, 3, 575-94 (2005)
[28] Molinaro, A. M.; Lostritto, K.; van der Laan., M., partDSA: Deletion/substitution/addition algorithm for partitioning the covariate space in prediction, Bioinformatics, 26, 10, 1357-63 (2010)
[29] Nigri, A.; Levantesi, S.; Marino, M.; Scognamiglio, S.; Perla., F., A deep learning integrated Lee-Carter model, Risks, 7, 1 (2019)
[30] O’Hagan, A.; Ferrari., C., Model-based and nonparametric approaches to clustering for data compression in actuarial applications, North American Actuarial Journal, 21, 1, 107-46 (2017) · Zbl 07059858
[31] Renshaw, A. E.; Haberman., S., Lee-Carter mortality forecasting: A parallel generalized linear modeling approach for England and Wales mortality projections, Journal of the Royal Statistical Society: Series C (Applied Statistics), 52, 1, 119-37 (2003) · Zbl 1111.62359
[32] Renshaw, A. E.; Haberman., S., A cohort-based extension to the Lee-Carter model for mortality reduction factors, Insurance: Mathematics and Economics, 38, 3, 556-70 (2006) · Zbl 1168.91418
[33] Richman, R.; Wüthrich, M. V., A neural network extension of the Lee-Carter model to multiple populations, Annals of Actuarial Science, 1-21 (2018)
[34] Russolillo, M.; Giordano, G.; Haberman., S., Extending the Lee-Carter model: A three-way decomposition, Scandinavian Actuarial Journal, 2011, 2, 96-117 (2011) · Zbl 1277.62260
[35] Shang, H. L.; Hyndman., R. J., Grouped functional time series forecasting: an application to age-specific mortality rates, Journal of Computational and Graphical Statistics, 26, 2, 330-43 (2017)
[36] Sinisi, S. E.; van der Laan., M. J., Deletion/substitution/addition algorithm in learning with applications in genomics, Statistical Applications in Genetics and Molecular Biology, 3, 1, 1-38 (2004) · Zbl 1166.62368
[37] Villegas, A. M.; Haberman, S.; Kaishev, V. K.; Millossovich., P., A comparative study of 2-population models for the assessment of basis risk in longevity hedges, ASTIN Bulletin, 47, 3, 631-79 (2017) · Zbl 1390.91215
[38] Wilmoth, J. R. (1993)
[39] Yao, J., Predictive modeling applications in actuarial science:, 2, Clustering in general insurance pricing (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.