M-estimators and trimmed means: from Hilbert-valued to fuzzy set-valued data. (English) Zbl 07363874

Summary: Different approaches to robustly measure the location of data associated with a random experiment have been proposed in the literature, with the aim of avoiding the high sensitivity to outliers or data changes typical for the mean. In particular, M-estimators and trimmed means have been studied in general spaces, and can be used to handle Hilbert-valued data. Both alternatives are of interest due to their success in the classical framework. Since fuzzy set-valued data can be identified with a convex cone of a separable Hilbert space, the previous concepts have been recently applied to the one-dimensional fuzzy case. The aim of this paper is to extend M-estimators and trimmed means to \(p\)-dimensional fuzzy set-valued data, and to theoretically prove that they inherit robustness from the real settings. Some of such theoretical results are more general and directly apply to Hilbert-valued estimators and, in consequence, to functional data. A real-life example will also be included to illustrate the computation and behaviour of these estimators under contamination.


62G35 Nonparametric robustness
62-07 Data analysis (statistics) (MSC2010)
03E72 Theory of fuzzy sets, etc.
Full Text: DOI Link


[1] Alfons, A.; Croux, C.; Gelper, S., Sparse least trimmed squares regression for analyzing high-dimensional large data sets, Ann Appl Stat, 7, 1, 226-248 (2013) · Zbl 1454.62123
[2] Aneiros, G.; Cao, R.; Fraiman, R.; Genest, C.; Vieu, P., Recent advances in functional data analysis and high-dimensional statistics, J Multivar Anal, 170, 3-9 (2019) · Zbl 1415.62043
[3] Bobylev, VN, Support function of a fuzzy set and its characteristic properties, Math Notes (USSR), 37, 4, 281-285 (1985) · Zbl 0609.04001
[4] Castaing, C.; Valadier, M., Convex analysis and measurable multifunctions (1977), Berlin: Springer, Berlin · Zbl 0346.46038
[5] Celmiņš, A., Least squares model fitting to fuzzy vector data, Fuzzy Sets Syst, 22, 245-269 (1987)
[6] Colubi, A.; González-Rodríguez, G., Fuzziness in data analysis: towards accuracy and robustness, Fuzzy Sets Syst, 281, 260-271 (2015) · Zbl 1368.62079
[7] Cuesta-Albertos, JA; Fraiman, R.; Liu, RY; Serfling, R.; Souvaine, DL, Impartial trimmed means for functional data, Data depth: robust multivariate statistical analysis, computational geometry and applications, 121-145 (2006), Providence: American Mathematical Society, Providence
[8] Cuesta-Albertos, JA; Fraiman, R., Impartial trimmed k-means for functional data, Comput Stat Data Anal, 51, 10, 4864-4877 (2007) · Zbl 1162.62377
[9] Cuesta-Albertos, JA; Gordaliza, A.; Matrán, C., Trimmed \(k\)-means: an attempt to robustify quantizers, Ann Stat, 25, 2, 553-576 (1997) · Zbl 0878.62045
[10] Cuevas, A.; Febrero, M.; Fraiman, R., Robust estimation and classification for functional data via projection-based depth notions, Comput Stat, 22, 3, 481-496 (2007) · Zbl 1195.62032
[11] de la Rosa de Sáa, S.; Lubiano, MA; Sinova, B.; Filzmoser, P., Robust scale estimators for fuzzy data, Adv Data Anal Classif, 11, 4, 731-758 (2017) · Zbl 1414.62104
[12] Donoho, DL; Huber, PJ; Bickel, PJ; Doksum, K. Jr; Hodges, JL, The notion of breakdown point, A Festschrift for Eric L, 157-184 (1983), Lehmann: Wadsworth, Lehmann
[13] Fréchet, M., Les éléments aléatoires de nature quelconque dans un espace distancié, Ann I H Poincaré, 10, 215-310 (1948) · Zbl 0035.20802
[14] García-Escudero, LA; Gordaliza, A.; Mayo-Iscar, A.; Martín, RS, Robust clusterwise linear regression through trimming, Comput Stat Data Anal, 54, 3057-3069 (2010) · Zbl 1284.62198
[15] Gil, MA; Colubi, A.; Terán, P., Random fuzzy sets: why, when, how, BEIO, 30, 1, 5-29 (2013)
[16] Hampel, FR, The influence curve and its role in robust estimation, J Am Stat Assoc, 69, 383-393 (1974) · Zbl 0305.62031
[17] Hesketh, T.; Pryor, R.; Hesketh, B., An application of a computerized fuzzy graphic rating scale to the psychological measurement of individual differences, Int J Man Mach Stud, 29, 21-35 (1988) · Zbl 0653.92021
[18] Huber, PJ, Robust estimation of a location parameter, Ann Math Stat, 35, 73-101 (1964) · Zbl 0136.39805
[19] Huber, PJ, Robust statistics (1981), Hoboken: Wiley, Hoboken · Zbl 0536.62025
[20] Hubert, M.; Rousseeuw, P.; Segaert, P., Multivariate and functional classification using depth and distance, Adv Data Anal Classif, 11, 445-466 (2017) · Zbl 1414.62247
[21] Kim, JS; Scott, CD, Robust kernel density estimation, J Mach Learn Res, 13, 2529-2565 (2012) · Zbl 1436.62119
[22] Klement, EP; Puri, ML; Ralescu, DA, Limit theorems for fuzzy random variables, Proc R Soc Lond Ser A Math Phys Eng Sci, 407, 171-182 (1986) · Zbl 0605.60038
[23] López-Pintado, S.; Romo, J., On the concept of depth for functional data, J Am Stat Assoc, 104, 486, 718-734 (2009) · Zbl 1388.62139
[24] Lubiano, MA; Montenegro, M.; Sinova, B.; de la Rosa de Sáa, S.; Gil, MA, Hypothesis testing for means in connection with fuzzy rating scale-based data: algorithms and applications, Eur J Oper Res, 251, 918-929 (2016) · Zbl 1346.62027
[25] Lubiano, MA; Salas, A.; Gil, MA, A hypothesis testing-based discussion on the sensitivity of means of fuzzy data with respect to data shape, Fuzzy Sets Syst, 328, 54-69 (2017) · Zbl 1380.62090
[26] Minkowski, H., Volumen und oberfläche., Math Ann, 57, 447-495 (1903) · JFM 34.0649.01
[27] Puri, ML; Ralescu, DA, The concept of normality for fuzzy random variables, Ann Probab, 13, 1373-1379 (1985) · Zbl 0583.60011
[28] Puri, ML; Ralescu, DA, Fuzzy random variables, J Math Anal Appl, 114, 409-422 (1986) · Zbl 0592.60004
[29] Rivera-García, D.; García-Escudero, LA; Mayo-Iscar, A.; Ortega, J., Robust clustering for functional data based on trimming and constraints, Adv Data Anal Classif, 13, 201-225 (2019) · Zbl 1474.62166
[30] Salski, A., Fuzzy clustering of fuzzy ecological data, Ecol Inform, 2, 262-269 (2007)
[31] Sinova, B.; Gil, MA; Van Aelst, S., M-estimates of location for the robust central tendency of fuzzy data, IEEE Trans Fuzzy Syst, 24, 4, 945-956 (2016)
[32] Sinova, B.; González-Rodríguez, G.; Van Aelst, S., M-estimators of location for functional data, Bernoulli, 24, 3, 2328-2357 (2018) · Zbl 1440.62405
[33] Sugano, N., Fuzzy set theoretical approach to the tone triangular system, J Comput, 6, 11, 2345-2356 (2011)
[34] Trutschnig, W.; González-Rodríguez, G.; Colubi, A.; Gil, MA, A new family of metrics for compact, convex (fuzzy) sets based on a generalized concept of mid and spread, Inf Sci, 179, 23, 3964-3972 (2009) · Zbl 1181.62016
[35] Valencia, D.; Lillo, RE; Romo, J., A Kendall correlation coefficient between functional data, Adv Data Anal Classif, 13, 1083-1103 (2019) · Zbl 1459.62092
[36] Zadeh, LA, Fuzzy sets, Inf Control, 8, 3, 338-353 (1965) · Zbl 0139.24606
[37] Zadeh, LA, The concept of a linguistic variable and its application to approximate reasoning—I, Inf Sci, 8, 3, 199-249 (1975) · Zbl 0397.68071
[38] Zadeh, LA, Is there a need for fuzzy logic?, Inf Sci, 178, 2751-2779 (2008) · Zbl 1148.68047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.