×

Mixture of linear experts model for censored data: a novel approach with scale-mixture of normal distributions. (English) Zbl 07345446

Summary: Mixture of linear experts (MoE) model is one of the widespread statistical frameworks for modeling, classification, and clustering of data. Built on the normality assumption of the error terms for mathematical and computational convenience, the classical MoE model has two challenges: (1) it is sensitive to atypical observations and outliers, and (2) it might produce misleading inferential results for censored data. The aim is then to resolve these two challenges, simultaneously, by proposing a robust MoE model for model-based clustering and discriminant censored data with the scale-mixture of normal (SMN) class of distributions for the unobserved error terms. An analytical expectation-maximization (EM) type algorithm is developed in order to obtain the maximum likelihood parameter estimates. Simulation studies are carried out to examine the performance, effectiveness, and robustness of the proposed methodology. Finally, a real dataset is used to illustrate the superiority of the new model.

MSC:

62-XX Statistics

Software:

AS 136; CensMixReg
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Akaike, H., A new look at the statistical model identification, (Selected Papers of Hirotugu Akaike (1974), Springer), 215-222
[2] Basso, R. M.; Lachos, V. H.; Cabral, C. R.B.; Ghosh, P., Robust mixture modeling based on scale mixtures of skew-normal distributions, Comput. Stat. Data Anal., 54, 12, 2926-2941 (2010) · Zbl 1284.62193
[3] Birnbaum, Z. W.; Saunders, S. C., A new family of life distributions, J. Appl. Probab., 6, 2, 319-327 (1969) · Zbl 0209.49801
[4] Caudill, S. B., A partially adaptive estimator for the censored regression model based on a mixture of normal distributions, Stat. Methods Appl., 21, 2, 121-137 (2012)
[5] Chamroukhi, F., Robust mixture of experts modeling using the \(t\) distribution, Neural Netw., 79, 20-36 (2016) · Zbl 1418.62251
[6] Chamroukhi, F., Skew \(t\) mixture of experts, Neurocomputing, 266, 390-408 (2017)
[7] Cuesta-Albertos, J. A.; Gordaliza, A.; Matrán, C., Trimmed \(k\)-means: An attempt to robustify quantizers, Ann. Statist., 25, 2, 553-576 (1997) · Zbl 0878.62045
[8] Dempster, A. P.; Laird, N. M.; Rubin, D. B., Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc.: Ser. B, 39, 1, 1-22 (1977) · Zbl 0364.62022
[9] DeSarbo, W. S.; Cron, W. L., A maximum likelihood methodology for clusterwise linear regression, J. Classification, 5, 2, 249-282 (1988) · Zbl 0692.62052
[10] Filho, E. B.D. A.; Garay, A. W.M., TSMN: Truncated scale mixtures of normal distributions (2017), R package version 1.0.0
[11] Garay, A. M.; Lachos, V. H.; Bolfarine, H.; Cabral, C. R., Linear censored regression models with scale mixtures of normal distributions, Statist. Papers, 58, 1, 247-278 (2017) · Zbl 1394.62131
[12] Garay, A. M.; Lachos, V. H.; Lin, T. I., Nonlinear censored regression models with heavy-tailed distributions, Stat. Interface, 9, 281-293 (2016) · Zbl 1405.62094
[13] García-Escudero, L.; Gordaliza, A.; Mayo-Iscar, A.; Martín, R. S., Robust clusterwise linear regression through trimming, Comput. Stat. Data Anal., 54, 12, 3057-3069 (2010) · Zbl 1284.62198
[14] Gómez, G.; Calle, M. L.; Oller, R.; Langohr, K., Tutorial on methods for interval-censored data and their implementation in r, Stat. Modell., 9, 4, 259-297 (2009) · Zbl 07257705
[15] Hartigan, J. A.; Wong, M. A., Algorithm AS 136: A \(k\)-means clustering algorithm, J. R. Stat. Soc. C, 28, 1, 100-108 (1979) · Zbl 0447.62062
[16] Hörmann, W.; Leydold, J., Generating generalized inverse Gaussian random variates, Stat. Comput., 24, 4, 547-557 (2013) · Zbl 1325.62031
[17] Hu, H.; Yao, W.; Wu, Y., The robust EM-type algorithms for log-concave mixtures of regression models, Comput. Stat. Data Anal., 111, 14-26 (2017) · Zbl 1464.62092
[18] Hubert, L.; Arabie, P., Comparing partitions, J. Classification, 2, 1, 193-218 (1985)
[19] Jacobs, R. A.; Jordan, M. I.; Nowlan, S. J.; Hinton, G. E., Adaptive mixtures of local experts, Neural Comput., 3, 1, 79-87 (1991)
[20] Jiang, W.; Tanner, M. A., Hierarchical mixtures-of-experts for exponential family regression models: approximation and maximum likelihood estimation, Ann. Statist., 987-1011 (1999) · Zbl 0957.62032
[21] Jones, P.; McLachlan, G., Fitting finite mixture models in a regression context, Aust. J. Stat., 34, 2, 233-240 (1992)
[22] Karlsson, M.; Laitila, T., Finite mixture modeling of censored regression models, Statist. Papers, 55, 3, 627-642 (2014) · Zbl 1416.62215
[23] Kaufman, L.; Rousseeuw, P. J., Finding Groups in Data (1990), John Wiley & Sons: John Wiley & Sons Hoboken, New Jersey · Zbl 1345.62009
[24] Lachos, V. H.; Cabral, C. R.; Prates, M. O.; Dey, D. K., Flexible regression modeling for censored data based on mixtures of student-\(t\) distributions, Comput. Statist., 34, 1, 123-152 (2019) · Zbl 1417.62280
[25] Lachos, V. H.; Garay, A. M.; Cabral, C. R., Moments of truncated scale mixtures of skew-normal distributions, Braz. J. Probab. Stat., 34, 3, 478-494 (2020) · Zbl 1445.62030
[26] Lachos, V. H.; Moreno, E. J.L.; Chen, K.; Cabral, C. R.B., Finite mixture modeling of censored data using the multivariate student-\(t\) distribution, J. Multivariate Anal., 159, 151-167 (2017) · Zbl 1397.62221
[27] Lin, T. I.; Ho, H. J.; Lee, C. R., Flexible mixture modelling using the multivariate skew-\(t\)-normal distribution, Stat. Comput., 24, 4, 531-546 (2014) · Zbl 1325.62113
[28] Lin, T. I.; Lachos, V. H.; Wang, W. L., Multivariate longitudinal data analysis with censored and intermittent missing responses, Stat. Med., 37, 19, 2822-2835 (2018)
[29] Lin, T. I.; Wang, W. L., Multivariate-\(t\) linear mixed models with censored responses, intermittent missing values and heavy tails, Stat. Methods Med. Res., 29, 5, 1288-1304 (2020)
[30] Liu, M.; Lin, T. I., A skew-normal mixture regression model, Educ. Psychol. Meas., 74, 1, 139-162 (2014)
[31] Liu, C.; Rubin, D. B., The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence, Biometrika, 81, 4, 633-648 (1994) · Zbl 0812.62028
[32] Mattos, T.d. B.; Garay, A. M.; Lachos, V. H., Likelihood-based inference for censored linear regression models with scale mixtures of skew-normal distributions, J. Appl. Stat., 45, 11, 2039-2066 (2018)
[33] Mazza, A.; Punzo, A., Mixtures of multivariate contaminated normal regression models, Statist. Papers, 61, 2, 787-822 (2017) · Zbl 1435.62238
[34] McLachlan, G.; Peel, D., Finite Mixture Models (2000), John Wiley & Sons: John Wiley & Sons New York · Zbl 0963.62061
[35] Meilijson, I., A fast improvement to the EM algorithm on its own terms, J. R. Stat. Soc. Ser. B Stat. Methodol., 51, 1, 127-138 (1989) · Zbl 0674.65118
[36] Meng, X. L.; Rubin, D. B., Maximum likelihood estimation via the ECM algorithm: A general framework, Biometrika, 80, 2, 267-278 (1993) · Zbl 0778.62022
[37] Mroz, T. A., The sensitivity of an empirical model of married women’s hours of work to economic and statistical assumptions, Econometrica, 765-799 (1987)
[38] Naderi, M.; Arabpour, A.; Lin, T. I.; Jamalizadeh, A., Nonlinear regression models based on the normal mean-variance mixture of Birnbaum-Saunders distribution, J. Korean Stat. Soc., 46, 3, 476-485 (2017) · Zbl 1368.62184
[39] Naderi, M.; Hung, W. L.; Lin, T. I.; Jamalizadeh, A., A novel mixture model using the multivariate normal mean-variance mixture of Birnbaum-Saunders distributions and its application to extrasolar planets, J. Multivariate Anal., 171, 126-138 (2019) · Zbl 1417.62176
[40] Nguyen, H. D.; McLachlan, G. J., Laplace mixture of linear experts, Comput. Stat. Data Anal., 93, 177-191 (2016) · Zbl 1468.62147
[41] Niwattanakul, S.; Singthongchai, J.; Naenudorn, E.; Wanapu, S., Using of jaccard coefficient for keywords similarity, (Proceedings of the International Multiconference of Engineers and Computer Scientists, Vol. 1 (2013)), 380-384
[42] Peng, F.; Jacobs, R. A.; Tanner, M. A., Bayesian inference in mixtures-of-experts and hierarchical mixtures-of-experts models with an application to speech recognition, J. Amer. Statist. Assoc., 91, 435, 953-960 (1996) · Zbl 0882.62022
[43] Rand, W. M., Objective criteria for the evaluation of clustering methods, J. Amer. Statist. Assoc., 66, 336, 846-850 (1971)
[44] Schwarz, G., Estimating the dimension of a model, Ann. Statist., 6, 2, 461-464 (1978) · Zbl 0379.62005
[45] Tobin, J., Estimation of relationships for limited dependent variables, Econometrica, 26, 1, 24-36 (1958) · Zbl 0088.36607
[46] Yang, Y. C.; Lin, T. I.; Castro, L. M.; Wang, W. L., Extending finite mixtures of \(t\) linear mixed-effects models with concomitant covariates, Comput. Stat. Data Anal., 148, Article 106961 pp. (2020) · Zbl 07212312
[47] Yu, L.; Chen, D. G.; Liu, J., Efficient and direct estimation of the variance-covariance matrix in EM algorithm with interpolation method, J. Statist. Plann. Inference, 211, 1, 119-130 (2021) · Zbl 1455.62143
[48] Zeller, C. B.; Cabral, C. R.B.; Lachos, V. H., Robust mixture regression modeling based on scale mixtures of skew-normal distributions, TEST, 25, 2, 375-396 (2016) · Zbl 1342.62113
[49] Zeller, C. B.; Cabral, C. R.B.; Lachos, V. H.; Benites, L., Finite mixture of regression models for censored data based on scale mixtures of normal distributions, Adv. Data Anal. Classif., 13, 1, 89-116 (2019) · Zbl 1474.62259
[50] Zens, G., Bayesian shrinkage in mixture-of-experts models: identifying robust determinants of class membership, Adv. Data Anal. Classif., 13, 4, 1019-1051 (2019) · Zbl 1474.62088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.