×

Correlation coefficient and entropy measures based on complex dual type-2 hesitant fuzzy sets and their applications. (English) Zbl 1464.68395

Summary: The theory of complex dual type-2 hesitant fuzzy sets (CDT-2HFSs) is a blend of two different modifications of fuzzy sets (FSs), called complex fuzzy sets (CFSs) and dual type-2 hesitant fuzzy sets (DT-2HFSs). CDT-2HFS is a proficient technique to cope with unpredictable and awkward information in realistic decision problems. CDT-2HFS is composed of the grade of truth and the grade of falsity, and the grade of truth (also for grade of falsity) contains the grade of primary and secondary parts in the form of polar coordinates with the condition that the sum of the maximum of the real part (also for the imaginary part) of the primary grade (also for the secondary grade) cannot exceed the unit interval \([0,1]\). The aims of this manuscript are to discover the novel approach of CDT-2HFS and its operational laws. These operational laws are also justified with the help of an example. Additionally, based on a novel CDT-2HFS, we explored the correlation coefficient (CC) and entropy measures (EMs), and their special cases are also discussed. TOPSIS method based on CDT-2HFS is also explored. Then, we applied our explored measures based on CDT-2HFSs in the environment of the TOPSIS method, medical diagnosis, pattern recognition, and clustering algorithm to cope with the awkward and complicated information in realistic decision issues. Finally, some numerical examples are given to examine the proficiency and validity of the explored measures. Comparative analysis, advantages, and graphical interpretation of the explored measures with some other existing measures are also discussed.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
03E72 Theory of fuzzy sets, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Loch, K. D.; Conger, S., Evaluating ethical decision making and computer use, Communications of the ACM, 39, 7, 74-83 (1996) · doi:10.1145/233977.233999
[2] Atanassov, K. T., Intuitionistic Fuzzy Sets, 1-137 (1999), Berlin, Germany: Springer, Berlin, Germany · Zbl 0939.03057
[3] Krishankumar, R.; Ravichandran, K. S.; Tyagi, S. K., Solving cloud vendor selection problem using intuitionistic fuzzy decision framework, Neural Computing and Applications, 32, 2, 589-602 (2020) · doi:10.1007/s00521-018-3648-1
[4] Zadeh, L. A., Fuzzy sets, Information and Control, 8, 3, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/s0019-9958(65)90241-x
[5] Zadeh, L. A., The concept of a linguistic variable and its application to approximate reasoning—II, Information Sciences, 8, 4, 301-357 (1975) · Zbl 0404.68074 · doi:10.1016/0020-0255(75)90046-8
[6] Mizumoto, M.; Tanaka, K., Some properties of fuzzy sets of type 2, Information and Control, 31, 4, 312-340 (1976) · Zbl 0331.02042 · doi:10.1016/s0019-9958(76)80011-3
[7] Mizumoto, M.; Tanaka, K., Fuzzy sets and type 2 under algebraic product and algebraic sum, Fuzzy Sets and Systems, 5, 3, 277-290 (1981) · Zbl 0457.04005 · doi:10.1016/0165-0114(81)90056-7
[8] Nieminen, J., On the algebraic structure of fuzzy sets of type 2, Kybernetika, 13, 4, 261-273 (1977) · Zbl 0366.94003
[9] Torra, V., Hesitant fuzzy sets, International Journal of Intelligent Systems, 25, 6, 529-539 (2010) · Zbl 1198.03076
[10] Feng, L.; Chuan-qiang, F.; Wei-he, X., Type-2 hesitant fuzzy sets, Fuzzy Information and Engineering, 10, 2, 249-259 (2018) · doi:10.1080/16168658.2018.1517977
[11] Zhu, B.; Xu, Z.; Xia, M., Dual hesitant fuzzy sets, Journal of Applied Mathematics, 2012 (2012) · Zbl 1244.03152 · doi:10.1155/2012/879629
[12] Alcantud, J. C. R.; Santos-García, G.; Peng, X.; Zhan, J., Dual extended hesitant fuzzy sets, Symmetry, 11, 5, 714 (2019) · Zbl 1425.03023 · doi:10.3390/sym11050714
[13] Ramot, D.; Milo, R.; Friedman, M.; Kandel, A., Complex fuzzy sets, IEEE Transactions on Fuzzy Systems, 10, 2, 171-186 (2002) · doi:10.1109/91.995119
[14] Ramot, D.; Friedman, M.; Langholz, G.; Kandel, A., Complex fuzzy logic, IEEE Transactions on Fuzzy Systems, 11, 4, 450-461 (2003) · doi:10.1109/tfuzz.2003.814832
[15] Liu, P.; Ali, Z.; Mahmood, T., The distance measures and cross-entropy based on complex fuzzy sets and their application in decision making, Journal of Intelligent & Fuzzy Systems, 39, Preprint, 1-24 (2020)
[16] Zhang, D.-A.; Dillon, T. S.; Cai, K. Y.; Ma, J.; Lu, J., Operation properties and δ-equalities of complex fuzzy sets, International Journal of Approximate Reasoning, 50, 8, 1227-1249 (2009) · Zbl 1196.03077 · doi:10.1016/j.ijar.2009.05.010
[17] Chiang, D. A.; Lin, N. P., Partial correlation of fuzzy sets, Fuzzy Sets and Systems, 110, 2, 209-215 (2000) · Zbl 0970.62040 · doi:10.1016/s0165-0114(98)00081-5
[18] Chaudhuri, B. B.; Bhattacharya, A., On correlation between two fuzzy sets (2001) · Zbl 1013.62067
[19] Gerstenkorn, T.; Mańko, J., Correlation of intuitionistic fuzzy sets, Fuzzy Sets and Systems, 44, 1, 39-43 (1991) · Zbl 0742.04008 · doi:10.1016/0165-0114(91)90031-k
[20] De Luca, A.; Termini, S., A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory, Information and Control, 20, 4, 301-312 (1972) · Zbl 0239.94028 · doi:10.1016/s0019-9958(72)90199-4
[21] Yager, R. R., On the measure of fuzziness and negation part I: membership in the unit interval, International Journal of General Systems, 5 (1979) · Zbl 0429.04007
[22] Kosko, B., Fuzzy entropy and conditioning, Information Sciences, 40, 2, 165-174 (1986) · Zbl 0623.94005 · doi:10.1016/0020-0255(86)90006-x
[23] Xuecheng, L., Entropy, distance measure and similarity measure of fuzzy sets and their relations, Fuzzy Sets and Systems, 52, 3, 305-318 (1992) · Zbl 0782.94026 · doi:10.1016/0165-0114(92)90239-z
[24] Pal, J.-L.; Pal, Y.-L., Some properties of the exponential entropy, Information Sciences, 66, 1-2, 119-137 (1992) · Zbl 0754.94003 · doi:10.1016/0020-0255(92)90090-u
[25] Fan, J. L.; Ma, Y. L., Some new fuzzy entropy formulas, Fuzzy Sets and Systems, 128, 2, 277-284 (2002) · Zbl 1018.94003 · doi:10.1016/s0165-0114(01)00127-0
[26] Hwang, Y.-M.; Yoon, T. M. S., Multiple Attribute Decision Making, 58-191 (1981), Berlin, Germany: Springer, Berlin, Germany · Zbl 0453.90002
[27] Wang, S.-M.; Elhag, L.-W., Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment, Expert Systems with Applications, 31, 2, 309-319 (2006) · doi:10.1016/j.eswa.2005.09.040
[28] Chen, S. M.; Lee, L. W., Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method, Expert Systems with Applications, 37, 4, 2790-2798 (2010) · doi:10.1016/j.eswa.2009.09.012
[29] Yoon, K. P.; Özlü, Ş., Correlation coefficients of dual type‐2 hesitant fuzzy sets and their applications in clustering analysis, Expert Systems with Applications, 89, 266-272 (2017) · doi:10.1016/j.eswa.2017.07.045
[30] Karaaslan, F.; Nguyen, V. D.; Nguyen, V. H.; Garg, H., Correlation coefficients of dual type‐2 hesitant fuzzy sets and their applications in clustering analysis, Complex & Intelligent Systems, 35, 7, 1200-1229 (2020) · doi:10.1002/int.22239
[31] Nguyen, X. T.; Garg, H., Exponential similarity measures for Pythagorean fuzzy sets and their applications to pattern recognition and decision-making process, Complex & Intelligent Systems, 5, 2, 217-228 (2019) · doi:10.1007/s40747-019-0105-4
[32] Liu, P.; Ali, Z.; Mahmood, T., A method to multi-attribute group decision-making problem with complex q-rung orthopair linguistic information based on Heronian mean operators, International Journal of Computational Intelligence Systems, 12, 2, 1465-1496 (2019)
[33] Liu, P.; Mahmood, T.; Ali, Z., Complex Q-rung orthopair fuzzy aggregation operators and their applications in multi-attribute group decision making, Information, 11, 1, 5 (2020)
[34] Garg, H.; Gwak, J.; Mahmood, T.; Ali, Z., Power aggregation operators and VIKOR methods for complex q-rung orthopair fuzzy sets and their applications, Mathematics, 8, 3, 538 (2020) · doi:10.3390/math8040538
[35] Ali, Z.; Mahmood, T., Maclaurin symmetric mean operators and their applications in the environment of complex q-rung orthopair fuzzy sets, Computational and Applied Mathematics, 39, 161 (2020) · Zbl 1449.03020 · doi:10.1007/s40314-020-01145-3
[36] Garg, H.; Ali, Z.; Mahmood, T., Algorithms for complex interval‐valued q‐rung orthopair fuzzy sets in decision making based on aggregation operators, AHP, and TOPSIS. Expert Systems, 37 (2020)
[37] Liu, P.; Ali, Z.; Mahmood, T.; Hassan, N., Group decision-making using complex q-rung orthopair fuzzy Bonferroni mean, International Journal of Computational Intelligence Systems, 13, 1, 822-851 (2020)
[38] Liu, P.; Mahmood, T.; Ali, Z., Complex q-rung orthopair fuzzy Variation coefficient similarity measures and their approach in medical diagnosis and pattern recognition, Scientia Iranica (2020) · doi:10.24200/SCI.2020.55133.4089
[39] Mahmood, T.; Ali, Z., Entropy measure and TOPSIS method based on correlation coefficient using complex q-rung orthopair fuzzy information and its application to multi-attribute decision making, Soft Computing, 7, 1-27 (2020)
[40] Ali, M.; Smarandache, F., Complex neutrosophic set, Neural Computing and Applications, 28, 7, 1817-1834 (2017) · doi:10.1007/s00521-015-2154-y
[41] Ullah, K.; Garg, H.; Mahmood, T.; Jan, N.; Ali, Z., Correlation coefficients for T-spherical fuzzy sets and their applications in clustering and multi-attribute decision making, Soft Computing, 24, 1-13 (2019)
[42] Ullah, K.; Ali, Z.; Jan, N.; Mahmood, T.; Maqsood, S., Multi-attribute decision making based on Averaging aggregation operators for picture hesitant fuzzy sets, Technical Journal, 23, 4, 84-95 (2018)
[43] Jan, N.; Ali, Z.; Ullah, M.-S.; Mahmood, T., Some generalized distance and similarity measures for picture hesitant fuzzy sets and their applications in building material recognition and multi-attribute decision making, Journal of Mathematics (ISSN 1016-2526), 51, 7, 51-70 (2019)
[44] Ali, Z.; Mahmood, T.; Yang, M. S., Complex T-spherical fuzzy aggregation operators with application to multi-attribute decision making, Symmetry, 12, 10, 1311 (2020) · doi:10.3390/sym12081311
[45] Ali, Z.; Mahmood, T.; Yang, M.-S., TOPSIS method based on complex spherical fuzzy sets with Bonferroni mean operators, Mathematics, 8, 1739 (2020) · doi:10.3390/math8101739
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.