×

Chebyshev type inequalities with fractional delta and nabla \(h\)-sum operators. (English) Zbl 1489.26025

Summary: The aim of this study is to establish new discrete inequalities for synchronous functions using fractional order delta and nabla \(h\)-sum operators. We give examples to illustrate our results.

MSC:

26D15 Inequalities for sums, series and integrals
26A33 Fractional derivatives and integrals
26E70 Real analysis on time scales or measure chains
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anastassiou, G. A., Nabla fractional calculus on time scales and inequalities, J. Concr. Appl. Math., 11(1) (2013), 96-111. · Zbl 1312.26011
[2] Atici, F, M., Eloe, P. W., A transform method in discrete fractional calculus, Int. J. Difference Equ., 2(2007), 165-176.
[3] Gonska, H., Rasa, I., Rusu, M., Chebyshev-Grüss-type inequalities via discrete oscillations, Bul. Acad. ¸Stiin¸te Repub. Mold. Mat., 74(1) (2014), 63-89. · Zbl 1305.26040
[4] Mozyrska, D., Girejko, E., Overview of Fractional h-Difference Operators., Advances in Harmonic Analysis and Operator Theory, 253-268, Oper. Theory Adv. Appl., 229, Birkhäuser/Springer Basel AG, Basel, 2013. · Zbl 1262.39024
[5] Andric, M., Pecaric, J., Peric, I., A multiple Opial type inequality for the Riemann-Liouville fractional derivatives, J. Math. Inequal., 7(1) (2013), 139-150. https://doi.org/10.7153/jmi-07-13 · Zbl 1264.26023
[6] Aslıyüce, S., Güvenilir, A. F., Chebyshev type inequality on nabla discrete fractional calculus, Fract. Differ. Calc., 6(2) (2016), 275-280. https://doi.org/10.7153/fdc-06-18 · Zbl 1424.26043
[7] Aslıyüce, S., Güvenilir, A. F., Fractional Jensen’s Inequality, Palest. J. Math., 7(2) (2018), 554-558. · Zbl 1393.26021
[8] Aslıyüce, S., Wirtinger type inequalities via fractional integral operators, Stud. Univ. Babes- Bolyai Math., 64(1) (2019) 1, 35-42. https://doi.org/10.24193/subbmath.2019.1.04 · Zbl 1438.26007
[9] Atici, F, M., Eloe, P. W., Discrete fractional calculus with the nabla operator, Electron J. Qual. Theory Differ. Equ., 3(2009), 12pp. · Zbl 1189.39004
[10] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J., Fractional Calculus. Models and Numerical Methods. World Scientific Publishing Co. Pte. Ltd., Hackensack, 2017. · Zbl 1347.26006
[11] Bastos, N. R. O., Ferreira, R. A. C, Torres, D. F. M., Discrete-time fractional variational problems, Signal Processing, 91(2011), 513-524. https://doi.org/10.1016/j.sigpro.2010.05.001 · Zbl 1203.94022
[12] Belarbi, S., Dahmani, Z., On some new fractional integral inequalities, JIPAM. J. Inequal. Pure Appl. Math., 10(3) (2009), Article 86, 5 pp. · Zbl 1184.26011
[13] Bohner, M., Ferreira, R. A. C., Some discrete fractional inequalities of Chebyshev type, Afr. Diaspora J. Math., 11(2) (2011), 132-137. · Zbl 1242.26024
[14] Chebyshev, P.L., Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov, 2,(1882), 93-98.
[15] Dragomir, S. S., Crstici, B., A mapping associated to Chebyshev’s inequality for integrals, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 10(1999), 63-67. · Zbl 1009.26017
[16] Dragomir, S. S., Operator Inequalities of the Jensen, Cebyshev and Grüss Type, Springer Briefs in Mathematics. Springer, New York, 2012. · Zbl 1242.47001
[17] Ferreira, R. A. C., A discrete fractional Gronwall inequality, Proc. Amer. Math. Soc., 140(5) (2012), 1605-1612. https://doi.org/10.1090/S0002-9939-2012-11533-3 · Zbl 1243.26012
[18] Ferreira, R. A. C., Torres, D. F. M., Fractional h-difference equations arising from the calculus of variations, Appl. Anal. Discrete Math., 5(1) (2011), 110-121. https://doi.org/10,2298/AADM110131002F · Zbl 1289.39007
[19] Flores-Franulic, A., Román-Flores, H., A Chebyshev type inequality for fuzzy integrals, Appl. Math. Comput., 190(2) (2007), 1178-1184. https://doi.org/10.1016/j.amc.2007.02.143 · Zbl 1129.26021
[20] Goodrich, C., Peterson, A. C., Discrete Fractional Calculus, Springer, Cham, 2015. · Zbl 1350.39001
[21] Persson, L., Oinarov, R., Shaimardan, S., Hardy-type inequalities in fractional h-discrete calculus, J. Inequal. Appl., 2018(73) (2018), 14 pp. https://doi.org/10.1186/s13660-018-1662- 6 · Zbl 1497.39003
[22] Podlubny, I. Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applica- tions, Academic Press, San Diego, CA, 1999. · Zbl 0924.34008
[23] Suwan, I., Owies, S., Abdeljawad, T., Monotonicity results for h-discrete fractional operators and application, Adv Di¤ er Equ., (2018) 2018: 207. https://doi.org/10.1186/s13662-018-1660-5 · Zbl 1446.39022
[24] Wen, J. J., Pecaric, J., Han, T. Y., Weak monotonicity and Chebyshev type inequality, Math. Inequal. Appl., 18(1) (2015), 217-231. https://doi.org/10.7153/mia-18-16 · Zbl 1307.26045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.