×

Wave drag on asymmetric bodies. (English) Zbl 1430.76072

Summary: An asymmetric body with a sharp leading edge and a rounded trailing edge produces a smaller wave disturbance moving forwards than backwards, and this is reflected in the wave drag coefficient. This experimental fact is not captured by Michell’s theory for wave drag (J. H. Michell [Phil. Mag. (5) 45, 106-123 (1898; JFM 29.0647.02)]). In this study, we use a tow-tank experiment to investigate the effects of asymmetry on wave drag, and show that these effects can be replicated by modifying Michell’s theory to include the growth of a symmetry-breaking boundary layer. We show that asymmetry can have either a positive or a negative effect on drag, depending on the depth of motion and the Froude number.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76F40 Turbulent boundary layers

Citations:

JFM 29.0647.02

Software:

Ipopt
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Benham, G. P., Hewitt, I. J., Please, C. P. & Bird, P. A. D.2018Optimal control of diffuser shapes for non-uniform flow. J. Engng. Maths113 (1), 65-92. · Zbl 1460.76566
[2] Benzaquen, M., Chevy, F. & Raphaël, E.2011Wave resistance for capillary gravity waves: finite-size effects. Europhys. Lett.96 (3), 34003.
[3] Benzaquen, M. & Raphael, E.2012Capillary-gravity waves on depth-dependent currents: consequences for the wave resistance. Europhys. Lett.97 (1), 14007.
[4] Berberović, E., van Hinsberg, N. P., Jakirlić, S., Roisman, I. V. & Tropea, C.2009Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Phys. Rev. E79 (3), 036306.
[5] Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B.2017Julia: a fresh approach to numerical computing. SIAM Rev.59 (1), 65-98. · Zbl 1356.68030
[6] Boucher, J. P.2018 Problèmes d’optimisation à la surface de l’eau. PhD thesis, Ecole polytechnique.
[7] Boucher, J. P., Labbé, R., Clanet, C. & Benzaquen, M.2018Thin or bulky: optimal aspect ratios for ship hulls. Phys. Rev. Fluids3, 074802.
[8] Dambrine, J., Pierre, M. & Rousseaux, G.2016A theoretical and numerical determination of optimal ship forms based on Michell’s wave resistance. ESAIM: Control Optim. Calculus Variations22 (1), 88-111. · Zbl 1335.49071
[9] Darmon, A., Benzaquen, M. & Raphaël, E.2014Kelvin wake pattern at large froude numbers. J. Fluid Mech.738, R3.
[10] Dunning, I., Huchette, J. & Lubin, M.2017Jump: a modeling language for mathematical optimization. SIAM Rev.59 (2), 295-320. · Zbl 1368.90002
[11] Fourdrinoy, J., Caplier, C., Devaux, Y., Rousseaux, G., Gianni, A., Zacharias, I., Jouteur, I., Martin, P. M., Dambrine, J., Petcu, M.2019The naval battle of actium and the myth of the ship-holder: the effect of bathymetry. In 5th MASHCON - International Conference on Ship Manoeuvring in Shallow and Confined Water, with non-exclusive focus on manoeuvring in waves, wind and current, pp. 104-133. Flanders Hydraulics Research; Maritime Technology Division, Ghent University.
[12] Gotman, A. S.2002Study of Michell’s integral and influence of viscosity and ship hull form on wave resistance. Ocean. Engng Intl6 (2), 74-115.
[13] Havelock, T. H.1919Wave resistance: some cases of three-dimensional fluid motion. Proc. R. Soc. Lond. A95 (670), 354-365. · JFM 46.1269.03
[14] Havelock, T. H.1932The theory of wave resistance. Proc. R. Soc. Lond. A138 (835), 339-348. · JFM 58.0882.03
[15] Huan, J. & Modi, V.1996Design of minimum drag bodies in incompressible laminar flow. Inverse Problems Engng3 (4), 233-260.
[16] Lazauskas, L. V.2009 Resistance, wave-making and wave-decay of thin ships, with emphasis on the effects of viscosity. PhD thesis, The University of Adelaide.
[17] Maynord, S. T.2005Wave height from planing and semi-planing small boats. River Res. Appl.21 (1), 1-17.
[18] Menter, F. R.1994Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J.32 (8), 1598-1605.
[19] Michell, J. H.1898XI. The wave-resistance of a ship. Lond. Edinb. Dubl. Phil. Mag. J. Sci.45 (272), 106-123. · JFM 29.0647.02
[20] Newman, J. N.2018Marine Hydrodynamics. MIT Press.
[21] Nocedal, J. & Wright, S. J.2006Numerical Optimization, 2nd edn. Springer. · Zbl 1104.65059
[22] Pethiyagoda, R., McCue, S. W. & Moroney, T. J.2017Spectrograms of ship wakes: identifying linear and nonlinear wave signals. J. Fluid Mech.811, 189-209. · Zbl 1383.76058
[23] Rabaud, M. & Moisy, F.2014Narrow ship wakes and wave drag for planing hulls. Ocean Engng90, 34-38.
[24] Schlichting, H., Gersten, K., Krause, E., Oertel, H. & Mayes, K.1960Boundary-Layer Theory. Springer.
[25] Stack, J. & Von Doenhoff, A. E.1934Tests of 16 Related Airfoils at High Speeds. NACA.
[26] Theodorakakos, A. & Bergeles, G.2004Simulation of sharp gas – liquid interface using VOF method and adaptive grid local refinement around the interface. Intl J. Numer. Meth. Fluids45 (4), 421-439. · Zbl 1085.76551
[27] Tuck, E. O.1989The wave resistance formula of J. H. Michell (1898) and its significance to recent research in ship hydrodynamics. ANZIAM J.30 (4), 365-377. · Zbl 0668.76001
[28] Ubbink, O.1997 Numerical prediction of two fluid systems with sharp interfaces. PhD thesis, Imperial College London.
[29] Videler, J. J.2012Fish Swimming. Springer.
[30] Wächter, A. & Biegler, L. T.2006On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Progr.106 (1), 25-57. · Zbl 1134.90542
[31] Zakerdoost, H., Ghassemi, H. & Ghiasi, M.2013Ship hull form optimization by evolutionary algorithm in order to diminish the drag. J. Marine Sci. Appl.12 (2), 170-179.
[32] Zhao, Y., Zong, Z. & Zou, L.2015Ship hull optimization based on wave resistance using wavelet method. J. Hydrodyn.27 (2), 216-222.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.