×

Adaptive fuzzy observer-based cooperative control of unknown fractional-order multi-agent systems with uncertain dynamics. (English) Zbl 1436.93071

Summary: In our paper, a new cooperative control for unknown fractional-order multi-agent systems is proposed. In addition to unknown dynamics, for the first time, the values of the fractional orders are also assumed to be unknown, and a new robust observer-based cooperative method for consensus issue of multi-agent systems (MASs) is presented. The unknown functions in the dynamics of the systems in all agents are estimated with the proposed interval type 2 fuzzy self-structuring radial basis function neural network (IT2F-SRBFNN). The free parameters of all IT2F-SRBFNN in all agents are adjusted using the adaptation laws which can be derived from the Lyapunov stability analysis. The strength of the proposed strategy is verified by a number of simulation examples.

MSC:

93C42 Fuzzy control/observation systems
93C40 Adaptive control/observation systems
93C41 Control/observation systems with incomplete information
93A16 Multi-agent systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aghababa, Mp, Synchronization and stabilization of fractional second-order nonlinear complex systems, Nonlinear Dyn, 80, 1731-1744 (2015) · Zbl 1345.93066 · doi:10.1007/s11071-014-1411-4
[2] Aguila-Camacho, N.; Duarte-Mermoud, Ma; Gallegos, Ja, Lyapunov functions for fractional order systems, Commun Nonlinear Sci Numer Simul, 19, 2951-2957 (2014) · Zbl 1510.34111 · doi:10.1016/j.cnsns.2014.01.022
[3] Amini, A.; Azarbahram, A.; Sojoodi, M., H_∞ consensus of nonlinear multi-agent systems using dynamic output feedback controller: an LMI approach, Nonlinear Dyn, 85, 1865-1886 (2016) · Zbl 1349.93133 · doi:10.1007/s11071-016-2801-6
[4] Barik, S.; Bapat, Rb; Pati, S., On the Laplacian spectra of product graphs, Appl Anal Discrete Math, 9, 39-58 (2015) · Zbl 1464.05226 · doi:10.2298/AADM150218006B
[5] Erginel, N.; Şentürk, S.; Yıldız, G., Modeling attribute control charts by interval type-2 fuzzy sets, Soft Comput, 22, 5033-5041 (2018) · Zbl 1398.62387 · doi:10.1007/s00500-018-3238-2
[6] Esmaeili, M.; Eslami, E., Intuitionistic fuzzy reasoning using the method of optimizing the similarity of truth tables, Soft Comput (2018) · Zbl 1418.68203 · doi:10.1007/s00500-018-3478-1
[7] Fahmi, A.; Abdullah, S.; Amin, F.; Ali, A., Precursor selection for sol-gel synthesis of titanium carbide nano powders by a new cubic fuzzy multi-attribute group decision making model, J Intell Syst, 15, 1, 145-167 (2017)
[8] Fahmi, A.; Abdullah, S.; Amin, F.; Ali, A.; Ahmad Khan, W., Some geometric operators with triangular cubic linguistic hesitant fuzzy number and their application in group decision-making, J Intell Fuzzy Syst, 35, 2485-2499 (2018) · doi:10.3233/JIFS-18125
[9] Fahmi, A.; Abdullah, S.; Amin, F.; Khan, Msa, Trapezoidal cubic fuzzy number Einstein hybrid weighted averaging operators and its application to decision making, Soft Comput, 23, 5753-5783 (2018) · Zbl 1418.91149 · doi:10.1007/s00500-018-3242-6
[10] Fahmi, A.; Amin, F.; Abdullah, S.; Ali, A., Cubic fuzzy Einstein aggregation operators and its application to decision-making, Int J Syst Sci, 49, 2385-2397 (2018) · Zbl 1480.91086 · doi:10.1080/00207721.2018.1503356
[11] Fahmi, A.; Amin, F.; Smarandache, F.; Khan, M.; Hassan, N., Triangular cubic hesitant fuzzy Einstein hybrid weighted averaging operator and its application to decision making, Symmetry, 10, 658 (2018) · Zbl 1423.47058 · doi:10.3390/sym10110658
[12] Ghaemi, S.; Sabahi, K.; Badamchizadeh, Ma, Lyapunov-Krasovskii stable T2FNN controller for a class of nonlinear time-delay systems, Soft Comput, 23, 1407-1419 (2018) · Zbl 1415.93157 · doi:10.1007/s00500-018-3053-9
[13] Gong, P.; Lan, W., Adaptive robust tracking control for uncertain nonlinear fractional-order multi-agent systems with directed topologies, Automatica, 92, 92-99 (2018) · Zbl 1388.93052 · doi:10.1016/j.automatica.2018.02.010
[14] Haghshenas, H.; Badamchizadeh, Ma; Baradarannia, M., Containment control of heterogeneous linear multi-agent systems, Automatica, 54, 210-216 (2015) · Zbl 1318.93005 · doi:10.1016/j.automatica.2015.02.002
[15] Huang, C.; Ye, X., Cooperative output regulation of heterogeneous multi-agent systems: an criterion, IEEE Trans Autom Control, 59, 267-273 (2014) · Zbl 1360.93218 · doi:10.1109/TAC.2013.2272133
[16] Li, I-H; Lee, L-W, Interval type 2 hierarchical FNN with the H-infinity condition for MIMO non-affine systems, Appl Soft Comput, 12, 1996-2011 (2012) · doi:10.1016/j.asoc.2012.01.022
[17] Li, C.; Qian, D.; Chen, Y., On Riemann-Liouville and Caputo derivatives, Discrete Dyn Nat Soc, 2011, 1-15 (2011) · Zbl 1213.26008
[18] Liu, L., Adaptive cooperative output regulation for a class of nonlinear multi-agent systems, IEEE Trans Autom Control, 60, 1677-1682 (2015) · Zbl 1360.93357 · doi:10.1109/TAC.2014.2360023
[19] Mohammadzadeh, A.; Ghaemi, S., A modified sliding mode approach for synchronization of fractional-order chaotic/hyperchaotic systems by using new self-structuring hierarchical type-2 fuzzy neural network, Neurocomputing, 191, 200-213 (2016) · doi:10.1016/j.neucom.2015.12.098
[20] Mohammadzadeh, A.; Hashemzadeh, F., A new robust observer-based adaptive type-2 fuzzy control for a class of nonlinear systems, Appl Soft Comput, 37, 204-216 (2015) · doi:10.1016/j.asoc.2015.07.036
[21] Mohammadzadeh, A.; Ghaemi, S.; Kaynak, O.; Khanmohammadi, S., Observer-based method for synchronization of uncertain fractional order chaotic systems by the use of a general type-2 fuzzy system, Appl Soft Comput, 49, 544-560 (2016) · doi:10.1016/j.asoc.2016.08.016
[22] Nguyen, Nn; Zhou, Wj; Quek, C., GSETSK: a generic self-evolving TSK fuzzy neural network with a novel Hebbian-based rule reduction approach, Appl Soft Comput, 35, 29-42 (2015) · doi:10.1016/j.asoc.2015.06.008
[23] Nie M, Wan Tan W (2008) Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. In: IEEE international conference on fuzzy systems, 2008. FUZZ-IEEE 2008 (IEEE world congress on computational intelligence), 2008. IEEE, pp 1425-1432
[24] Poli, J-P; Boudet, L., A fuzzy expert system architecture for data and event stream processing, Fuzzy Sets Syst, 343, 20-34 (2018) · doi:10.1016/j.fss.2017.10.005
[25] Sabahi, K.; Ghaemi, S.; Badamchizadeh, M., Designing an adaptive type-2 fuzzy logic system load frequency control for a nonlinear time-delay power system, Appl Soft Comput, 43, 97-106 (2016) · doi:10.1016/j.asoc.2016.02.012
[26] Shen, J.; Cao, J., Necessary and sufficient conditions for consensus of delayed fractional-order systems, Asian J Control, 14, 1690-1697 (2012) · Zbl 1303.93017 · doi:10.1002/asjc.492
[27] Shi, P.; Shen, Q., Cooperative control of multi-agent systems with unknown state-dependent controlling effects, IEEE Trans Autom Sci Eng, 12, 827-834 (2015) · doi:10.1109/TASE.2015.2403261
[28] Song, Q.; Cao, J.; Yu, W., Second-order leader-following consensus of nonlinear multi-agent systems via pinning control, Syst Control Lett, 59, 553-562 (2010) · Zbl 1213.37131 · doi:10.1016/j.sysconle.2010.06.016
[29] Tang, Z., Event-triggered consensus of linear discrete-time multi-agent systems with time-varying topology international journal of control, Autom Syst, 16, 1179-1185 (2018) · doi:10.1007/s12555-017-0124-0
[30] Wang, X.; Yang, G-H, Cooperative adaptive fault-tolerant tracking control for a class of multi-agent systems with actuator failures and mismatched parameter uncertainties, IET Control Theory Appl, 9, 1274-1284 (2015) · doi:10.1049/iet-cta.2014.0700
[31] Wang, F.; Yang, Y., Leader-following consensus of nonlinear fractional-order multi-agent systems via event-triggered control, Int J Syst Sci, 48, 571-577 (2017) · Zbl 1358.93018 · doi:10.1080/00207721.2016.1193258
[32] Wang, F.; Yang, H.; Yang, Y., Swarming movement of dynamical multi-agent systems with sampling control and time delays, Soft Comput, 23, 707-714 (2018) · Zbl 1415.93034 · doi:10.1007/s00500-018-3035-y
[33] Wu, H.; Li, J., Coordination control of uncertain topological high-order multi-agent systems: distributed fuzzy adaptive iterative learning approach, Soft Comput (2018) · Zbl 1418.93013 · doi:10.1007/s00500-018-3271-1
[34] Yin, X.; Yue, D.; Hu, S., Brief paper-consensus of fractional-order heterogeneous multi-agent systems, IET Control Theory Appl, 7, 314-322 (2013) · doi:10.1049/iet-cta.2012.0511
[35] Yu, Z.; Jiang, H.; Hu, C., Leader-following consensus of fractional-order multi-agent systems under fixed topology, Neurocomputing, 149, 613-620 (2015) · doi:10.1016/j.neucom.2014.08.013
[36] Yu, Z.; Jiang, H.; Hu, C.; Yu, J., Leader-following consensus of fractional-order multi-agent systems via adaptive pinning control, Int J Control, 88, 1746-1756 (2015) · Zbl 1338.93039 · doi:10.1080/00207179.2015.1015807
[37] Zhang, X-X; Li, H-X; Qi, C-K, Spatially constrained fuzzy-clustering-based sensor placement for spatiotemporal fuzzy-control system, IEEE Trans Fuzzy Syst, 18, 946-957 (2010) · doi:10.1109/TFUZZ.2010.2058810
[38] Zhao, L-W; Hua, C-C, Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM, Nonlinear Dyn, 75, 311-318 (2014) · Zbl 1281.93006 · doi:10.1007/s11071-013-1067-5
[39] Zhao, T.; Li, P.; Cao, J., Self-organising interval type-2 fuzzy neural network with asymmetric membership functions and its application, Soft Comput (2018) · doi:10.1007/s00500-018-3367-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.