×

Tachyon condensation in magnetic compactifications. (English) Zbl 1461.81093

Summary: Intersecting D-brane models and their T-dual magnetic compactifications provide an attractive framework for particle physics, allowing for chiral fermions and supersymmetry breaking. Generically, magnetic compactifications have tachyons that are usually removed by Wilson lines. However, quantum corrections prevent local minima for Wilson lines. We therefore study tachyon condensation in the simplest case, the magnetic compactification of type I string theory on a torus to eight dimensions. We find that tachyon condensation restores supersymmetry, which is broken by the magnetic flux, and we compute the Kaluza-Klein mass spectrum. The gauge group SO(32) is broken to USp(16). We give arguments that the vacuum reached by tachyon condensation corresponds to the unique 8d superstring theory already known in the literature, with discrete \(B_{ab}\) background or, in the T-dual version, the type IIB orientifold with three \(O7_-\)-planes, one \(O7_+\)-plane and eight D7-branes coincident with the \(O7_+\)-plane. The ground state after tachyon condensation is supersymmetric and has no chiral fermions.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T33 Dimensional compactification in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] L.E. Ibáñez and A.M. Uranga, String theory and particle physics: An introduction to string phenomenology, Cambridge University Press (2012) [INSPIRE]. · Zbl 1260.81001
[2] C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept.371 (2002) 1 [Erratum ibid.376 (2003) 407] [hep-th/0204089] [INSPIRE]. · Zbl 0999.83056
[3] Blumenhagen, R.; Körs, B.; Lüst, D.; Stieberger, S., Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept., 445, 1 (2007) · doi:10.1016/j.physrep.2007.04.003
[4] Arkani-Hamed, N.; Dimopoulos, S., Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP, 06, 073 (2005) · doi:10.1088/1126-6708/2005/06/073
[5] G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B699 (2004) 65 [Erratum ibid.706 (2005) 487] [hep-ph/0406088] [INSPIRE]. · Zbl 1123.81410
[6] Antoniadis, I.; Dimopoulos, S., Splitting supersymmetry in string theory, Nucl. Phys. B, 715, 120 (2005) · Zbl 1207.81097 · doi:10.1016/j.nuclphysb.2005.03.005
[7] Buchmüller, W.; Dierigl, M.; Ruehle, F.; Schweizer, J., Split symmetries, Phys. Lett. B, 750, 615 (2015) · Zbl 1364.83058 · doi:10.1016/j.physletb.2015.09.069
[8] C. Bachas, A Way to break supersymmetry, hep-th/9503030 [INSPIRE].
[9] Abouelsaood, A.; Callan, CG Jr; Nappi, CR; Yost, SA, Open Strings in Background Gauge Fields, Nucl. Phys. B, 280, 599 (1987) · doi:10.1016/0550-3213(87)90164-7
[10] Blumenhagen, R.; Görlich, L.; Körs, B.; Lüst, D., Noncommutative compactifications of type-I strings on tori with magnetic background flux, JHEP, 10, 006 (2000) · Zbl 0965.81113 · doi:10.1088/1126-6708/2000/10/006
[11] Angelantonj, C.; Antoniadis, I.; Dudas, E.; Sagnotti, A., Type I strings on magnetized orbifolds and brane transmutation, Phys. Lett. B, 489, 223 (2000) · Zbl 1031.81579 · doi:10.1016/S0370-2693(00)00907-2
[12] Berkooz, M.; Douglas, MR; Leigh, RG, Branes intersecting at angles, Nucl. Phys. B, 480, 265 (1996) · Zbl 0925.81211 · doi:10.1016/S0550-3213(96)00452-X
[13] Aldazabal, G.; Franco, S.; Ibáñez, LE; Rabadán, R.; Uranga, AM, D = 4 chiral string compactifications from intersecting branes, J. Math. Phys., 42, 3103 (2001) · Zbl 1036.81024 · doi:10.1063/1.1376157
[14] G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadán and A.M. Uranga, Intersecting brane worlds, JHEP02 (2001) 047 [hep-ph/0011132] [INSPIRE]. · Zbl 1036.81024
[15] Ibáñez, LE; Marchesano, F.; Rabadán, R., Getting just the standard model at intersecting branes, JHEP, 11, 002 (2001)
[16] Blumenhagen, R.; Körs, B.; Lüst, D.; Ott, T., The standard model from stable intersecting brane world orbifolds, Nucl. Phys. B, 616, 3 (2001) · Zbl 0988.81094 · doi:10.1016/S0550-3213(01)00423-0
[17] Cvetič, M.; Shiu, G.; Uranga, AM, Chiral four-dimensional N = 1 supersymmetric type 2A orientifolds from intersecting D6 branes, Nucl. Phys. B, 615, 3 (2001) · Zbl 0988.81087 · doi:10.1016/S0550-3213(01)00427-8
[18] Buchmüller, W.; Dudas, E.; Tatsuta, Y., Quantum corrections for D-brane models with broken supersymmetry, JHEP, 12, 022 (2019) · Zbl 1431.81117 · doi:10.1007/JHEP12(2019)022
[19] Antoniadis, I.; Gava, E.; Narain, KS; Taylor, TR, Duality in superstring compactifications with magnetic field backgrounds, Nucl. Phys. B, 511, 611 (1998) · Zbl 0947.81051 · doi:10.1016/S0550-3213(97)00653-6
[20] Hashimoto, K.; Nagaoka, S., Recombination of intersecting D-branes by local tachyon condensation, JHEP, 06, 034 (2003) · doi:10.1088/1126-6708/2003/06/034
[21] Epple, FTJ; Lüst, D., Tachyon condensation for intersecting branes at small and large angles, Fortsch. Phys., 52, 367 (2004) · Zbl 1049.83031 · doi:10.1002/prop.200310126
[22] Sen, A., Tachyon dynamics in open string theory, Int. J. Mod. Phys. A, 20, 5513 (2005) · Zbl 1075.81537 · doi:10.1142/S0217751X0502519X
[23] Bianchi, M.; Sagnotti, A., On the systematics of open string theories, Phys. Lett. B, 247, 517 (1990) · doi:10.1016/0370-2693(90)91894-H
[24] Bianchi, M.; Sagnotti, A., Twist symmetry and open string Wilson lines, Nucl. Phys. B, 361, 519 (1991) · doi:10.1016/0550-3213(91)90271-X
[25] Marcus, N.; Sagnotti, A.; Siegel, W., Ten-dimensional Supersymmetric Yang-Mills Theory in Terms of Four-dimensional Superfields, Nucl. Phys. B, 224, 159 (1983) · doi:10.1016/0550-3213(83)90318-8
[26] Arkani-Hamed, N.; Gregoire, T.; Wacker, JG, Higher dimensional supersymmetry in 4-D superspace, JHEP, 03, 055 (2002) · doi:10.1088/1126-6708/2002/03/055
[27] Wess, J.; Bagger, J., Supersymmetry and supergravity (1992), Princeton, NJ, U.S.A.: Princeton University Press, Princeton, NJ, U.S.A. · Zbl 0516.53060
[28] Buchmüller, W.; Dierigl, M.; Dudas, E., Flux compactifications and naturalness, JHEP, 08, 151 (2018) · Zbl 1396.81127 · doi:10.1007/JHEP08(2018)151
[29] Li, L-F, Group Theory of the Spontaneously Broken Gauge Symmetries, Phys. Rev. D, 9, 1723 (1974) · doi:10.1103/PhysRevD.9.1723
[30] H. Georgi, Lie algebras in particle physics. From isospin to unified theories, Front. Phys.54 (1982) 1 [INSPIRE]. · Zbl 0505.00036
[31] Lee, HM; Nilles, HP; Zucker, M., Spontaneous localization of bulk fields: The Six-dimensional case, Nucl. Phys. B, 680, 177 (2004) · Zbl 1039.81536 · doi:10.1016/j.nuclphysb.2003.12.031
[32] Buchmüller, W.; Dierigl, M.; Tatsuta, Y., Magnetized orbifolds and localized flux, Annals Phys., 401, 91 (2019) · Zbl 1415.81041 · doi:10.1016/j.aop.2018.12.006
[33] Cremades, D.; Ibáñez, LE; Marchesano, F., Computing Yukawa couplings from magnetized extra dimensions, JHEP, 05, 079 (2004) · doi:10.1088/1126-6708/2004/05/079
[34] Dudas, E.; Mourad, J.; Sagnotti, A., Charged and uncharged D-branes in various string theories, Nucl. Phys. B, 620, 109 (2002) · Zbl 0982.81041 · doi:10.1016/S0550-3213(01)00552-1
[35] Witten, E., Small instantons in string theory, Nucl. Phys. B, 460, 541 (1996) · Zbl 0935.81052 · doi:10.1016/0550-3213(95)00625-7
[36] Douglas, MR, Branes within branes, NATO Sci. Ser. C, 520, 267 (1999) · Zbl 0946.81058
[37] Angelantonj, C.; Condeescu, C.; Dudas, E.; Pradisi, G., Non-perturbative transitions among intersecting-brane vacua, JHEP, 07, 123 (2011) · Zbl 1298.81231 · doi:10.1007/JHEP07(2011)123
[38] Bianchi, M.; Pradisi, G.; Sagnotti, A., Toroidal compactification and symmetry breaking in open string theories, Nucl. Phys. B, 376, 365 (1992) · doi:10.1016/0550-3213(92)90129-Y
[39] Bianchi, M., A note on toroidal compactifications of the type-I superstring and other superstring vacuum configurations with sixteen supercharges, Nucl. Phys. B, 528, 73 (1998) · Zbl 0951.81034 · doi:10.1016/S0550-3213(98)00403-9
[40] Witten, E., Toroidal compactification without vector structure, JHEP, 02, 006 (1998) · Zbl 0958.81065
[41] Chaudhuri, S.; Hockney, G.; Lykken, JD, Maximally supersymmetric string theories in D < 10, Phys. Rev. Lett., 75, 2264 (1995) · Zbl 1020.81763 · doi:10.1103/PhysRevLett.75.2264
[42] Bianchi, M.; Gava, E.; Morales, JF; Narain, KS, D strings in unconventional type-I vacuum configurations, Nucl. Phys. B, 547, 96 (1999) · Zbl 0943.81034 · doi:10.1016/S0550-3213(99)00004-8
[43] Blumenhagen, R.; Körs, B.; Lüst, D., Type I strings with F flux and B flux, JHEP, 02, 030 (2001) · doi:10.1088/1126-6708/2001/02/030
[44] Bachas, C.; Bianchi, M.; Blumenhagen, R.; Lüst, D.; Weigand, T., Comments on Orientifolds without Vector Structure, JHEP, 08, 016 (2008) · doi:10.1088/1126-6708/2008/08/016
[45] Wu, TT; Yang, CN, Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields, Phys. Rev. D, 12, 3845 (1975) · doi:10.1103/PhysRevD.12.3845
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.