×

Extrinsic geometry and higher order contacts of surfaces in \(\mathbb R^5\). (English) Zbl 1392.53011

Summary: We study the extrinsic geometry of a surface in \(\mathbb R^5\) in relation to contact theory. We first completely determine the numerical invariants of the second fundamental form and describe the corresponding curvature ellipse. We then introduce and study a new quadratic map closely related to the degenerate directions of the surface, we characterize inflection and umbilic points of the surface in terms of the invariants, and we obtain an intrinsic equation of the asymptotic lines. Finally, we give a simple condition which guarantees the existence of an isometric reduction of codimension of the surface into \(\mathbb R^4\).

MSC:

53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. Anciaux and P. Bayard, On the affine Gauss maps of submanifolds of Euclidean space, to appear in the Bulletin of the Brazilian Mathematical Society. · Zbl 1416.53006
[2] P. Bayard and F. S´anchez-Bringas,Geometric invariants and principal configurations on spacelikesurfacesimmersedinR3,1,Proc.Roy.Soc.EdinburghSect.A140:6(2010)1141-1160. DOI: 10.1017/S0308210509001358 · Zbl 1205.53011
[3] P. Bayard and F. S´anchez-Bringas, Geometric invariants of surfaces in R4, Topology and its Appl., 159 (2012), 405-413.DOI: 10.1016/j.topol.2011.09.014 · Zbl 1235.53006
[4] S.I.R. Costa, S. Moraes and M. C. Romero Fuster, Geometric contacts of surfaces immersed in Rn, n ≥ 5, Differential Geom. Appl. 27 (2009), 442-454.DOI: 10.1016/j.difgeo.2008.10.020 · Zbl 1176.53015
[5] R. A. Garcia and J. Sotomayor, Lines of axial curvature on surfaces immersed in R4, Differential Geom. Appl. 12 (2000), 253-269.DOI: 10.1016/S0926-2245(00)00015-2 · Zbl 0992.53010
[6] R. A. Goncalvez, J. A. Mart´ınez Alfaro, A. Montesinos-Amilibia and M.C. Romero-Fuster, Relative mean curvature configurations for surfaces in Rn, n ≥ 5, Bull. Braz. Math. Soc., New Series 38(2)(2007), 157-178. · Zbl 1127.53005
[7] S. Izumiya, M.C. Romero Fuster, M.A. Soares Ruas, and F. Tari, Differential Geometry from a Singularity Theory Viewpoint, World Scientific, 2016. · Zbl 1369.53004
[8] E. Lane, A Treatise on Projective Differential Geometry, Chicago University Press, 1942. · JFM 68.0425.01
[9] J. A. Little, On the singularities of submanifolds of higher dimensional Euclidean spaces, Annali Mat. Pura et Appl., 83:4A (1969), 261-336.DOI: 10.1007/BF02411172 · Zbl 0187.18903
[10] H. Maillot, Courbures et basculements des sous-vari´et´es riemanniennes, M´emoires de la S.M.F. 2es´erie, tome 22 (1986), p 1-152. · Zbl 0595.53023
[11] F. M´endez, Ph. D. thesis, Universidad Nacional Aut´onoma de M´exico.
[12] D. K. H. Mochida, M. C. Romero Fuster and M. A. S. Ruas, Inflection points and nonsingular surfaces in 5, Rocky Mountain Journal of Math 33 (2003), 995-1010.DOI: 10.1216/rmjm/1181069939 R · Zbl 1049.57018
[13] M.C. Romero-Fuster, M.A.S. Ruas and F. Tari, Asymptotic curves on surfaces in R5, Comm. Contemp. Math. 10 (3), 2 (2008), 1-27. · Zbl 1167.53006
[14] M. C. Romero Fuster and F.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.