Prediction of the Nash through penalized mixture of logistic regression models. (English) Zbl 1477.62318

Summary: In this paper an appropriate and interpretable diagnosis statistical model is proposed to predict Nonalcoholic Steatohepatitis (NASH) from near infrared spectrometry data. In this disease, unknown patients’ profiles are expected to lead to a different diagnosis. The model has then to take into account the heterogeneity of the data and the dimension of the spectrometric data.
To this end, we propose to fit a mixture model on the joint distribution of the diagnostic binary variable and the covariates selected in the spectra. The penalized maximum likelihood estimator is considered. In practice, a twofold penalty on both regression coefficients and covariance parameters is imposed. Automatic selection criteria, such as the AIC and BIC, are used to select the amount of shrinkage and the number of clusters. The performance of the overall procedure is evaluated by a simulation study, and its application on the NASH data set is analyzed. The model leads to better prediction performance than competitive methods and provides highly interpretable results.


62P10 Applications of statistics to biology and medical sciences; meta analysis
62J12 Generalized linear models (logistic models)
62M20 Inference from stochastic processes and prediction


glasso; flexmix
Full Text: DOI


[1] Ahonen, I., Nevalainen, J. and Larocque, D. (2019). Prediction with a flexible finite mixture-of-regressions. Comput. Statist. Data Anal. 132 212-224. · Zbl 07027222
[2] Anty, R., Iannelli, A., Patouraux, S., Bonnafous, S., Lavallard, V., Senni-Buratti, M., Ben Amor, I., Staccini-Myx, A., Saint-Paul, M. C. et al. (2010). A new composite model including metabolic syndrome, alanine aminotransferase and cytokeratin-18 for the diagnosis of non-alcoholic steatohepatitis in morbidly obese patients. Aliment. Pharmacol. Ther. 32 1315-1322.
[3] Biernacki, C., Celeux, G. and Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22 719-725.
[4] Biernacki, C., Celeux, G. and Govaert, G. (2003). Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput. Statist. Data Anal. 41 561-575. · Zbl 1429.62235
[5] Bougeard, S., Abdi, H., Saporta, G. and Niang, N. (2018). Clusterwise analysis for multiblock component methods. Adv. Data Anal. Classif. 12 285-313. · Zbl 1414.62231
[6] Breslow, N. E. (1996). Statistics in epidemiology: The case-control study. J. Amer. Statist. Assoc. 91 14-28. · Zbl 0870.62082
[7] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 1-38. With discussion. · Zbl 0364.62022
[8] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360. · Zbl 1073.62547
[9] Friedman, J., Hastie, T. and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9 432-441. · Zbl 1143.62076
[10] Green, P. J. (1990). On use of the EM algorithm for penalized likelihood estimation. J. Roy. Statist. Soc. Ser. B 52 443-452. · Zbl 0706.62022
[11] Grün, B. and Leisch, F. (2007). Fitting finite mixtures of generalized linear regressions in \(R\). Comput. Statist. Data Anal. 51 5247-5252. · Zbl 1445.62192
[12] Hastie, T., Tibshirani, R. and Wainwright, M. (2015). Statistical Learning with Sparsity: The Lasso and Generalizations. Monographs on Statistics and Applied Probability 143. CRC Press, Boca Raton, FL.
[13] Hoshikawa, T. (2013). Mixture regression for observational data, with application to functional regression models. Available at: http://arxiv.org/abs/1307.0170.
[14] Jacobs, R. A., Jordan, M. I., Nowlan, S. J. and Hinton, G. E. (1991). Adaptive mixtures of local experts. Neural Comput. 3 79-87.
[15] Jiang, Y., Conglian, Y. and Qinghua, J. (2018). Model selection for the localized mixture of experts models. J. Appl. Stat. 45 1994-2006.
[16] Keribin, C. (2000). Consistent estimation of the order of mixture models. Sankhyā Ser. A 62 49-66. · Zbl 1081.62516
[17] Khalili, A. and Chen, J. (2007). Variable selection in finite mixture of regression models. J. Amer. Statist. Assoc. 102 1025-1038. · Zbl 1469.62306
[18] Khalili, A. and Lin, S. (2013). Regularization in finite mixture of regression models with diverging number of parameters. Biometrics 69 436-446. · Zbl 1273.62254
[19] Lloyd-Jones, L. R., Nguyen, H. D. and McLachlan, G. J. (2018). A globally convergent algorithm for lasso-penalized mixture of linear regression models. Comput. Statist. Data Anal. 119 19-38. · Zbl 1469.62109
[20] MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) 281-297. Univ. California Press, Berkeley, CA.
[21] McLachlan, G. and Peel, D. (2000). Finite Mixture Models. Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley Interscience, New York.
[22] Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80 267-278. · Zbl 0778.62022
[23] Misiti, M., Misiti, Y., Poggi, J.-M. and Portier, B. (2015). Mixture of linear regression models for short term pm10 forecasting in haute normandie (France). CS-BIGS 6 47-60.
[24] Morvan, M., Devijver, E., Giacofci, M. and Monbet, V. (2021). Supplement to “Prediction of the NASH through penalized mixture of logistic regression models.” https://doi.org/10.1214/20-AOAS1409SUPP
[25] Ross, J. and Dy, J. (2013). Nonparametric mixture of Gaussian processes with constraints. In Proc. 30th Int. Conf. Mach. Learn. 28 1346-1354.
[26] Rosset, S. and Tibshirani, R. J. (2020). From Fixed-X to Random-X regression: Bias-variance decompositions, covariance penalties, and prediction error estimation. J. Amer. Statist. Assoc. 115 138-151. · Zbl 1437.62351
[27] Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464. · Zbl 0379.62005
[28] Shmueli, G. (2010). To explain or to predict? Statist. Sci. 25 289-310. · Zbl 1329.62045
[29] Städler, N., Bühlmann, P. and van de Geer, S. (2010). \[{\ell_1}\]-penalization for mixture regression models. TEST 19 209-256. · Zbl 1203.62128
[30] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. · Zbl 0850.62538
[31] Vinh, N. X., Epps, J. and Bailey, J. (2010). Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11 2837-2854. · Zbl 1242.62062
[32] Wang, H., Li, R. and Tsai, C.-L. (2007). Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 94 553-568. · Zbl 1135.62058
[33] Xu, L., Jordan, M. I. and Hinton, G. E. (1995). An alternative model for mixtures of experts. In Advances in Neural Information Processing Systems 633-640.
[34] Younossi, Z., Anstee, Q. M., Marietti, M., Hardy, T., Henry, L., Eslam, M., George, J. and Bugianesi, E. (2018a). Global burden of nafld and nash: Trends, predictions, risk factors and prevention. Nature Reviews Gastroenterology & Hepatology 15 11-20.
[35] Younossi, Z., Loomba, R., Anstee, Q., Rinella, M., Bugianesi, E., Marchesini, G., Neuschwander-Tetri, B., Serfaty, L., Negro, F. et al. (2018b). Diagnostic modalities for nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and associated fibrosis. Hepatology 68 349-360.
[36] Yuksel, S. E., Wilson, J. N. and Gader, P. D. (2012). Twenty years of mixture of experts. IEEE Trans. Neural Netw. Learn. Syst. 23 1177-1193
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.