×

A survey of evolutionary computation for association rule mining. (English) Zbl 1458.68204

Summary: Association Rule Mining (ARM) is a significant task for discovering frequent patterns in data mining. It has achieved great success in a plethora of applications such as market basket, computer networks, recommendation systems, and healthcare. In the past few years, evolutionary computation-based ARM has emerged as one of the most popular research areas for addressing the high computation time of traditional ARM. Although numerous papers have been published, there is no comprehensive analysis of existing evolutionary ARM methodologies. In this paper, we review emerging research of evolutionary computation for ARM. We discuss the applications on evolutionary computations for different types of ARM approaches including numerical rules, fuzzy rules, high-utility itemsets, class association rules, and rare association rules. Evolutionary ARM algorithms were classified into four main groups in terms of the evolutionary approach, including evolution-based, swarm intelligence-based, physics-inspired, and hybrid approaches. Furthermore, we discuss the remaining challenges of evolutionary ARM and discuss its applications and future topics.

MSC:

68T20 Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)
68T05 Learning and adaptive systems in artificial intelligence
68W50 Evolutionary algorithms, genetic algorithms (computational aspects)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agarwal, A.; Nanavati, N., Association rule mining using hybrid GA-PSO for multi-objective optimisation, (IEEE International Conference on Computational Intelligence and Computing Research (2016)), 1-7
[2] Agrawal, J.; Agrawal, S.; Singhai, A.; Sharma, S., SET-PSO-based approach for mining positive and negative association rules, Knowl. Inf. Syst., 45, 2, 453-471 (2015)
[3] Agrawal, R.; Imielinski, T.; Swami, A., Mining association rules between sets of items in large databases, (ACM Conference on Management of Data (1993)), 207-216
[4] Agrawal, M.; Mishra, M.; Kushwah, S. P.S., Association rules optimization using improved PSO algorithm, (International Conference on Communication Networks (2015)), 395-398
[5] Agrawal, R.; Srikant, R., Fast algorithms for mining association rules in large databases, (International Conference on Very Large Databases (1994)), 487-499
[6] Ahn, K. I.; Kim, J. Y., Efficient mining of frequent itemsets and a measure of interest for association rule mining, J. Inf. Knowl. Manag., 3, 3, 245-257 (2004)
[7] Akbari, R.; Mohammadi, A.; Ziarati, K., A novel bee swarm optimization algorithm for numerical function optimization, Commun. Nonlinear Sci. Numer. Simul., 15, 10, 3142-3155 (2010) · Zbl 1222.90082
[8] Alatas, B.; Akin, E., An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules, Soft Comput., 10, 3, 230-237 (2006)
[9] Alatas, B.; Akin, E., Rough particle swarm optimization and its applications in data mining, Soft Comput., 12, 1205-1218 (2008) · Zbl 1141.68551
[10] Alatas, B.; Akin, E., Chaotically encoded particle swarm optimization algorithm and its applications, Chaos, Solit. Fract., 41, 2, 939-950 (2009)
[11] Alatas, B.; Akin, E., Multi-objective rule mining using a chaotic particle swarm optimization algorithm, Knowl.-Based Syst., 22, 6, 455-460 (2009)
[12] Alatas, B.; Akin, E.; Karci, A., MODENAR: Multi-objective differential evolution algorithm for mining numeric association rules, Appl. Soft Comput., 8, 1, 646-656 (2008)
[13] Alcalá, R.; Alcalá-Fdez, J.; Gacto, M. J.; Herrera, F., Genetic learning of membership functions for mining fuzzy association rules, (IEEE International Conference on Fuzzy Systems (2007)), 1-6 · Zbl 1147.68063
[14] Alcalá-Fdez, J.; Alcalá, R.; Gacto, M. J.; Herrera, F., Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms, Fuzzy Sets Syst., 160, 7, 905-921 (2009) · Zbl 1187.68377
[15] Alcala-Fdez, J.; Flugy-Pape, N.; Bonarini, A.; Herrera, F., Analysis of the effectiveness of the genetic algorithms based on extraction of association rules, Fundamenta Informaticae, 98, 1, 1-14 (2010)
[16] Alhajj, R.; Kaya, M., Multi-objective genetic algorithms based automated clustering for fuzzy association rules mining, J. Intell. Inf. Syst., 31, 3, 243-264 (2008)
[17] Almasi, M.; Abadeh, M. S., Rare-PEARs: A new multi objective evolutionary algorithm to mine rare and non-redundant quantitative association rules, Knowl.-Based Syst., 89, 366-384 (2015)
[18] Altaf, W.; Shahbaz, M.; Guergachi, A., Applications of association rule mining in health informatics: a survey, Artif. Intell. Rev., 47, 3, 313-340 (2017)
[19] Altay, E. V.; Alatas, B., Performance analysis of multi-objective artificial intelligence optimization algorithms in numerical association rule mining, J. Ambient Intell. Human. Comput., 1-21 (2019)
[20] Al-Dabbagh, R. D.; Neri, F.; Idris, N.; Baba, M. S., Algorithmic design issues in adaptive differential evolution schemes: Review and taxonomy, Swarm .Evol. Comput., 43, 284-311 (2018)
[21] Al-Maqaleh, B. M., Discovering interesting association rules: a multi-objective genetic algorithm approach, Int. J. Appl. Inf. Syst., 5, 3, 47-52 (2013)
[22] Álvarez, V. P.; Vázquez, J. M., An evolutionary algorithm to discover quantitative association rules from huge databases without the need for an a priori discretization, Expert Syst. Appl., 39, 1, 585-593 (2012)
[23] Badhon, B.; Kabir, M. M.J.; Xu, S.; Kabir, M., A survey on association rule mining based on evolutionary algorithms, Int. J. Comput. Appl., 1-11 (2019)
[24] Beiranvand, V.; Mobasher-Kashani, M.; Bakar, A. A., Multi-objective PSO algorithm for mining numerical association rules without a priori discretization, Expert Syst. Appl., 41, 9, 4259-4273 (2014)
[25] Berrado, A.; Runger, G. C., Using metarules to organize and group discovered association rules, Data Mining Knowl. Discov., 14, 3, 409-431 (2007)
[26] Birtolo, C.; De Chiara, D.; Ascione, M.; Armenise, R., A generative approach to product bundling in the e-commerce domain, (3rd World Congress on Nature and Biologically Inspired Computing (2011)), 169-175
[27] Birtolo, C.; De Chiara, D.; Losito, S.; Ritrovato, P.; Veniero, M., Searching optimal product bundles by means of GA-based engine and market basket analysis, (Joint IFSA World Congress and NAFIPS Annual Meeting (2013)), 448-453
[28] Boussaïd, I.; Lepagnot, J.; Siarry, P., A survey on optimization metaheuristics, Inf. Sci., 237, 82-117 (2013) · Zbl 1321.90156
[29] Brin, S.; Motwani, R.; Ullman, J. D.; Tsur, S., Dynamic itemset counting and implication rules for market basket data, ACM Sigmod Record, 26, 2, 255-264 (1997)
[30] Can, U.; Alatas, B., Automatic mining of quantitative association rules with gravitational search algorithm, Int. J. Software Eng. Knowledge Eng., 27, 3, 343-372 (2017)
[31] Cano, A.; Luna, J. M.; Ventura, S., High performance evaluation of evolutionary-mined association rules on GPUs, J. Supercomput., 66, 3, 1438-1461 (2013)
[32] Carmona, C. J.; González, P.; Del Jesus, M. J.; Herrera, F., NMEEF-SD: non-dominated multiobjective evolutionary algorithm for extracting fuzzy rules in subgroup discovery, IEEE Trans. Fuzzy Syst., 18, 5, 958-970 (2010)
[33] Chamazi, M. A.; Bidgoli, B. M.; Nasiri, M., Deriving support threshold values and membership functions using the multiple-level cluster-based master-slave IFG approach, Soft Computing, 17, 7, 1227-1239 (2013)
[34] Chamazi, M. A.; Motameni, H., Finding suitable membership functions for fuzzy temporal mining problems using fuzzy temporal bees method, Soft Comput., 23, 10, 3501-3518 (2019)
[35] Chan, R.; Yang, Q.; Shen, Y. D., Mining high utility itemsets, (IEEE International Conference on Data Mining (2003)), 19-26
[36] Chen, C. H.; He, J. S.; Hong, T. P., MOGA-based fuzzy data mining with taxonomy, Knowl.-Based Syst., 54, 53-65 (2013)
[37] Chen, C. H.; Hong, T. P.; Lee, Y. C., A multiple-level genetic-fuzzy mining algorithm, (IEEE International Conference on Fuzzy Systems (2011)), 278-282
[38] Chen, C. H.; Hong, T. P.; Lee, Y. C., Genetic-fuzzy mining with taxonomy, International Journal of Uncertainty, Fuzz. Knowl.-Based Syst., 20, 2, 187-205 (2012)
[39] Chen, C. H.; Hong, T. P.; Lee, Y. C.; Tseng, V. S., Finding active membership functions for genetic-fuzzy data mining, Int. J. Inf. Technol. Decis. Making, 14, 6, 1215-1242 (2015)
[40] Chen, C. H.; Hong, T. P.; Tseng, V. S., A cluster-based fuzzy-genetic mining approach for association rules and membership functions, (IEEE International Conference on Fuzzy Systems (2006)), 1411-1416
[41] Chen, C. H.; Hong, T. P.; Tseng, V. S., A cluster-based genetic-fuzzy mining approach for items with multiple minimum supports, (Pacific-Asia Conference on Knowledge Discovery and Data Mining (2008)), 864-869
[42] Chen, C. H.; Hong, T. P.; Tseng, V. S., An improved approach to find membership functions and multiple minimum supports in fuzzy data mining, Expert Syst. Appl., 36, 6, 10016-10024 (2009)
[43] Chen, C. H.; Hong, T. P.; Tseng, V. S., Speeding up genetic-fuzzy mining by fuzzy clustering, (IEEE International Conference on Fuzzy Systems (2009)), 1695-1699
[44] Chen, C. H.; Hong, T. P.; Tseng, V. S., A SPEA2-based genetic-fuzzy mining algorithm, (International Conference on Fuzzy Systems (2010)), 1-5
[45] Chen, C. H.; Hong, T. P.; Tseng, V. S., Finding pareto-front membership functions in fuzzy data mining, Int. J. Comput. Intell. Syst., 5, 2, 343-354 (2012)
[46] Chen, C. H.; Hong, T. P.; Tseng, V. S.; Chen, L. C., A multi-objective genetic-fuzzy mining algorithm, (IEEE International Conference on Granular Computing (2008)), 115-120
[47] Chen, C. H.; Hong, T. P.; Tseng, V. S.; Lee, C. S., A genetic-fuzzy mining approach for items with multiple minimum supports, Soft Comput., 13, 5, 521-533 (2009)
[48] Chen, Y.; Li, F.; Fan, J., Mining association rules in big data with NGEP, Cluster Comput., 18, 2, 577-585 (2015)
[49] Chen, C.; Mabu, S.; Shimada, K.; Hirasawa, K., Network intrusion detection using class association rule mining based on genetic network programming, IEEJ Trans. Electr. Electr. Eng., 5, 5, 553-559 (2010)
[50] Chen, C.; Mabu, S.; Yue, C.; Shimada, K.; Hirasawa, K., Network intrusion detection using fuzzy class association rule mining based on genetic network programming, (IEEE International Conference on Systems, Man and Cybernetics (2009)), 60-67
[51] Chen, C. H.; Tseng, V. S.; Hong, T. P., Cluster-based evaluation in fuzzy-genetic data mining, IEEE Trans. Fuzzy Syst., 16, 249-262 (2008)
[52] Cheng, Y.; Li, Q., GA‐based multi-level association rule mining approach for defect analysis in the construction industry, Autom. Constr., 51, 78-91 (2015)
[53] Cui, Y.; Geng, Z.; Zhu, Q.; Han, Y., Multi-objective optimization methods and application in energy saving, Energy, 125, 681-704 (2017)
[54] Das, S.; Suganthan, P. N., Differential evolution: A survey of the state-of-the-art, IEEE Trans. Evol. Comput., 15, 1, 4-31 (2011)
[55] Dash, S. R.; Dehuri, S.; Rayaguru, S., Discovering interesting rules from biological data using parallel genetic algorithm, (3rd IEEE International Advance Computing Conference (2013)), 631-636
[56] Dehuri, S.; Jagadev, A. K.; Ghosh, A.; Mall, R., Multi-objective genetic algorithm for association rule mining using a homogeneous dedicated cluster of workstations, Am. J. Appl. Sci., 3, 2086-2095 (2006)
[57] Del Jesus, M. J.; Gamez, J. A.; Gonzalez, P.; Puerta, J. M., On the discovery of association rules by means of evolutionary algorithms, Wiley Interdiscipl. Rev., 1, 5, 397-415 (2011)
[58] Djenouri, Y.; Bendjoudi, A.; Djenouri, D.; Belhadi, A.; Nouali-Taboudjemat, N., New GPU-based swarm intelligence approach for reducing big association rules space, (IEEE Smart World, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing (2017), Internet of People and Smart City Innovation), 1-6
[59] Djenouri, Y.; Bendjoudi, A.; Djenouri, D.; Comuzzi, M., GPU-based bio-inspired model for solving association rules mining problem, (25th Euro micro International Conference on Parallel (2017), Distributed and Network-Based Processing), 262-269
[60] Djenouri, Y.; Belhadi, A.; Fournier-Viger, P.; Fujita, H., Mining diversified association rules in big datasets: a cluster/GPU/genetic approach, Inf. Sci., 459, 117-134 (2018)
[61] Djenouri, Y.; Belhadi, A.; Fournier-Viger, P.; Lin, J. C.W., An hybrid multi-core/GPU-based mimetic algorithm for big association rule mining, (International Conference on Genetic and Evolutionary Computing (2017)), 59-65
[62] Djenouri, Y.; Bendjoudi, A.; Habbas, Z.; Mehdi, M.; Djenouri, D., Reducing thread divergence in GPU‐based bees swarm optimization applied to association rule mining, Concurrency Comput., 29, 9 (2017)
[63] Djenouri, Y.; Bendjoudi, A.; Mehdi, M.; Nouali-Taboudjemat, N.; Habbas, Z., Parallel association rules mining using GPUs and bees behaviors, (6th International Conference of Soft Computing and Pattern Recognition (2012)), 401-405
[64] Djenouri, Y.; Bendjoudi, A.; Mehdi, M.; Nouali-Taboudjemat, N.; Habbas, Z., GPU-based bees swarm optimization for association rules mining, J. Supercomput., 71, 4, 1318-1344 (2015)
[65] Djenouri, Y.; Bendjoudi, A.; Nouali-Taboudjemat, N., Association rules mining using evolutionary algorithms, (the 9th International Conference on Bio-inspired Computing: Theories and Applications (2014))
[66] Djenouri, Y.; Comuzzi, M., GA-Apriori: Combining Apriori heuristic and genetic algorithms for solving the frequent itemsets mining problem, (Pacific-Asia Conference on Knowledge Discovery and Data Mining Springer, Cham (2017)), 138-148
[67] Djenouri, Y.; Comuzzi, M., Combining Apriori heuristic and bio-inspired algorithms for solving the frequent itemsets mining problem, Inf. Sci., 420, 1-15 (2017)
[68] Djenouri, Y.; Djenouri, D.; Belhadi, A.; Fournier-Viger, P.; Lin, J. C.W., A new framework for meta-heuristic-based frequent itemset mining, Appl. Intell., 48, 12, 4775-4791 (2018)
[69] Djenouri, Y.; Djenouri, D.; Belhadi, A.; Fournier-Viger, P.; Lin, J. C.W.; Bendjoudi, A., Exploiting GPU parallelism in improving bees swarm optimization for mining big transactional databases, Inf. Sci., 496, 326-342 (2019)
[70] Djenouri, Y.; Djenouri, D.; Habbas, Z., Intelligent mapping between GPU and cluster computing for discovering big association rules, Appl. Soft Comput., 65, 387-399 (2018)
[71] Djenouri, Y.; Drias, H.; Chemchem, A., A hybrid bees swarm optimization and tabu search algorithm for association rule mining, (World Congress on Nature and Biologically Inspired Computing (2013)), 120-125
[72] Djenouri, Y.; Drias, H.; Habbas, Z., Hybrid intelligent method for association rules mining using multiple strategies, Int. J. Appl. Meta-Heuristic Comput., 5, 1, 46-64 (2014)
[73] Djenouri, Y.; Drias, H.; Habbas, Z., Bees swarm optimisation using multiple strategies for association rule mining, Int. J. Bio-Inspired Comput., 6, 4, 239-249 (2014)
[74] Djenouri, Y.; Drias, H.; Habbas, Z.; Mosteghanemi, H., Bees swarm optimization for web association rule mining, (IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology (2012)), 142-146
[75] Djenouri, Y.; Fournier-Viger, P.; Belhadi, A.; Lin, J. C.W., Meta-heuristics for frequent and high-utility itemset mining, (Fournier-Viger, P.; Lin, J. C-W.; Nkambou, R.; Vo, B.; Tseng, V. S., High-Utility Pattern Mining: Theory, Algorithms and Applications (2019), Springer), 261-278
[76] Djenouri, Y.; Fournier-Viger, P.; Lin, J. C.W.; Djenouri, D.; Belhadi, A., GPU-based swarm intelligence for association rule mining in big databases, Intell. Data Anal., 23, 1, 57-76 (2019)
[77] Djenouri, Y.; Habbas, Z.; Djenouri, D.; Comuzzi, M., Diversification heuristics in bees swarm optimization for association rules mining, (Pacific-Asia Conference on Knowledge Discovery and Data Mining (2017)), 68-78
[78] Djenouri, Y.; Lin, J. C.W.; Djenouri, D.; Belhadi, A.; Fournier-Viger, P., GBSO-RSS: GPU-based BSO for rules space summarization, (Conference on Big Data Analysis and Deep Learning Applications (2018)), 123-129
[79] Dorigo, M.; Gambardella, L. M., Ant colony system: a cooperative learning approach to the traveling salesman problem, IEEE Trans. Evol. Comput., 1, 1, 53-66 (1997)
[80] Dorigo, M.; Maniezzo, V.; Colorni, A., Ant system: optimization by a colony of cooperating agents, IEEE Trans. Syst. Man Cybernet., 26, 1, 29-41 (1996)
[81] Dorigo, M.; Stutzle, T., Ant Colony Optimization (2004), MIT Press · Zbl 1092.90066
[82] Fernández, A.; del Río, S.; Bawakid, A.; Herrera, F., Fuzzy rule based classification systems for big data with MapReduce: granularity analysis, Adv. Data Anal. Classif., 11, 4, 711-730 (2017) · Zbl 1414.68055
[83] Fister, I.; Iglesias, A.; Galvez, A.; Del Ser, J.; Osaba, E., Differential evolution for association rule mining using categorical and numerical attributes, (International Conference on Intelligent Data Engineering and Automated Learning (2018)), 79-88
[84] Fournier-Viger, P.; Lin, J. C.W.; Gomariz, A.; Gueniche, T.; Soltani, A.; Deng, Z.; Lam, H. T., The SPMF open-source data mining library version 2, (Joint European Conference on Machine Learning and Knowledge Discovery in Databases (2016)), 36-40
[85] Fung, K. Y.; Kwong, C. K.; Siu, K. W.; Yu, K. M., A multi-objective genetic algorithm approach to rule mining for affective product design, Expert Syst. Appl., 39, 8, 7411-7419 (2012)
[86] Gandomi, A. H.; Yang, X. S.; Alavi, A. H., Cuckoo search algorithm: a meta-heuristic approach to solve structural optimization problems, Eng. Comput., 29, 1, 17-35 (2013)
[87] Gandomi, A. H.; Yang, X. S.; Talatahari, S.; Alavi, A. H., Metaheuristic algorithms in modeling and optimization, (Gandomi, A. H.; Yang, X. S.; Talatahari, S.; Alavi, A. H., Metaheuristic Applications in Structures and Infrastructures, Metaheuristic Applications in Structures and Infrastructures (2013), Elsevier), 1-24
[88] Ganghishetti, P.; Vadlamani, R., Association rule mining via evolutionary multi-objective optimization, (International Workshop on Multi-Disciplinary Trends in Artificial Intelligence (2014)), 35-46
[89] Geng, Z.; Chen, G.; Han, Y.; Lu, G.; Li, F., Semantic relation extraction using sequential and tree-structured LSTM with attention, Inf. Sci., 509, 183-192 (2020)
[90] Geng, Z.; Meng, Q.; Bai, J.; Chen, J.; Han, Y.; Wei, Q.; Ouyang, Z., A model-free Bayesian classifier, Inf. Sci., 482, 171-188 (2019)
[91] Ghafari, S. M.; Tjortjis, C., A survey on association rules mining using heuristics, Wiley Interdiscip. Rev., 9, 4, e1307 (2019)
[92] Gheraibia, Y.; Moussaoui, A., Penguins search optimization algorithm (PeSOA), (International Conference on Industrial (2013), Engineering and other Applications of Applied Intelligent Systems), 222-231
[93] Gheraibia, Y.; Moussaoui, A.; Djenouri, Y.; Kabir, S.; Yin, P. Y., Penguins search optimisation algorithm for association rules mining, J. Comput. Inf. Technol., 24, 2, 165-179 (2016)
[94] Ghosh, A.; Nath, B., Multi-objective rule mining using genetic algorithms, Inf. Sci., 163, 1-3, 123-133 (2004)
[95] Goldberg, D. E.; Richardson, J., Genetic algorithms with sharing for multimodal function optimization, (2nd International Conference on Genetic Algorithms (1987)), 41-49
[96] Gong, Y. J.; Chen, W. N.; Zhan, Z. H.; Zhang, J.; Li, Y.; Zhang, Q.; Li, J. J., Distributed evolutionary algorithms and their models: A survey of the state-of-the-art, Appl. Soft Comput., 34, 286-300 (2015)
[97] Grami, M.; Gheibi, R.; Rahimi, F., A novel association rule mining using genetic algorithm, (8th International Conference on Information and Knowledge Technology (2016)), 200-204
[98] Guo, H.; Zhou, Y., An algorithm for mining association rules based on improved genetic algorithm and its application, (3rd IEEE International Conference on Genetic and Evolutionary Computing (2009)), 117-120
[99] Gupta, M., Application of weighted particle swarm optimization in association rule mining, Int. J. Comput. Sci. Inf., 1, 2231-5292 (2012)
[100] Gupta, M. K.; Sikka, G., Association rules extraction using multi-objective feature of genetic algorithm, (World Congress on Engineering and Computer Science (2013))
[101] Hadian, A.; Nasiri, M.; Minaei-Bidgoli, B., Clustering based multi-objective rule mining using genetic algorithm, Int. J. Digit. Content Technol. Appl., 4, 1, 37-42 (2010)
[102] Haldulakar, R.; Agrawal, J., Optimization of association rule mining through genetic algorithm, Int. J. Comput. Sci. Eng., 3, 3, 1252-1259 (2011)
[103] Han, K. H.; Kim, J. H., Quantum-inspired evolutionary algorithm for a class of combinatorial optimization, IEEE Trans. Evol. Comput., 6, 6, 580-593 (2002)
[104] Han, J.; Pei, J.; Yin, Y., Mining frequent patterns without candidate generation, (International Conference on Management of Data (2000)), 1-12
[105] Han, J.; Pei, J.; Yin, Y.; Mao, R., Mining frequent pattern without candidate generation: a frequent pattern tree approach, Data Mining Knowl. Discov., 8, 1, 53-87 (2004)
[106] Han, J.; Wang, J.; Lu, Y.; Tzvetkov, P., Mining top-k frequent closed patterns without minimum support, (IEEE International Conference on Data Mining (2002)), 211-218
[107] Heraguemi, E.; Kamel, N.; Drias, H., Association rule mining based on bat algorithm, (Bio-Inspired Computing-Theories and Applications (2014)), 182-186
[108] Heraguemi, K. E.; Kamel, N.; Drias, H., Association rule mining based on bat algorithm, J. Comput. Theoret. Nanosci., 12, 7, 1195-1200 (2015)
[109] Heraguemi, K. E.; Kamel, N.; Drias, H., Multi-population cooperative bat algorithm for association rule mining, (Computational Collective Intelligence (2015)), 265-274
[110] Heraguemi, K. E.; Kamel, N.; Drias, H., Multi-swarm bat algorithm for association rule mining using multiple cooperative strategies, Appl. Intell., 45, 4, 1021-1033 (2016)
[111] Heraguemi, K. E.; Kamel, N.; Drias, H., Multi-objective bat algorithm for mining interesting association rules, (International Conference on Mining Intelligence and Knowledge Exploration (2016)), 13-23
[112] Herrera, F.; Martínez, L., A 2-tuple fuzzy linguistic representation model for computing with words, IEEE Trans. Fuzzy Syst., 8, 6, 746-752 (2000)
[113] Heydari, M.; Yousefli, A., A new optimization model for market basket analysis with allocation considerations: a genetic algorithm solution approach, Manag. Market., 12, 1, 1-11 (2017)
[114] Hirasawa, K.; Okubo, M.; Katagiri, H.; Hu, J.; Murata, J., Comparison between genetic network programming (GNP) and genetic programming (GP), (the Congress on Evolutionary Computation (2001)), 1276-1282
[115] Holland, J. H., Adaptation in Natural and Artificial Systems (1975), University of Michigan Press: University of Michigan Press Michigan
[116] Hong, T. P.; Chen, C. H.; Lee, Y. C.; Wu, Y. L., Genetic-fuzzy data mining with divide-and-conquer strategy, IEEE Trans. Evol. Comput., 12, 2, 252-265 (2008)
[117] Hong, T. P.; Chen, C. H.; Wu, Y. L.; Lee, Y. C., Using divide-and-conquer GA strategy in fuzzy data mining, (9th International Symposium on Computers and Communications (2004)), 116-121
[118] Hong, T. P.; Chen, C. H.; Wu, Y. L.; Lee, Y. C., A GA-based fuzzy mining approach to achieve a trade-off between number of rules and suitability of membership functions, Soft Comput., 10, 11, 1091-1101 (2006)
[119] Hong, T. P.; Lee, Y. C.; Wu, M. T., Using the master-slave parallel architecture for genetic-fuzzy data mining, (IEEE International Conference on Systems, Man and Cybernetics (2005)), 3232-3237
[120] Hong, T. P.; Lee, Y. C.; Wu, M. T., An effective parallel approach for genetic-fuzzy data mining, Expert Syst. Appl., 41, 2, 655-662 (2014)
[121] Hong, T. P.; Tung, Y. F.; Wang, S. L.; Wu, Y. L., A multi-level ant-based algorithm for fuzzy data mining, (Annual Meeting of the North American Fuzzy Information Processing Society (2009)), 1-5
[122] Hong, T. P.; Tung, Y. F.; Wang, S. L.; Wu, M. T.; Wu, Y. L., An ACS-based framework for fuzzy data mining, Expert Syst. Appl., 36, 9, 11844-11852 (2009)
[123] Hong, T. P.; Tung, Y. F.; Wang, S. L.; Wu, Y. L.; Wu, M. T., A multi-level ant-colony mining algorithm for membership functions, Inf. Sci., 182, 1, 3-14 (2012)
[124] Hu, Y. C., Determining membership functions and minimum fuzzy support in finding fuzzy association rules for classification problems, Knowl.-Based Syst., 19, 1, 57-66 (2006)
[125] Huang, T. C.K., Discovery of fuzzy quantitative sequential patterns with multiple minimum supports and adjustable membership functions, Inf. Sci., 222, 126-146 (2013)
[126] Indira, K.; Kanmani, S., Association rule mining through adaptive parameter control in particle swarm optimization, Comput. Stat., 30, 1, 251-277 (2015) · Zbl 1342.65036
[127] Jiang, H.; Kwong, C. K.; Park, W. Y.; Yu, K. M., A multi-objective PSO approach of mining association rules for affective design based on online customer reviews, J. Eng. Des., 29, 7, 381-403 (2018)
[128] Kabir, M. M.J.; Xu, S.; Kang, B. H.; Zhao, Z., Discovery of interesting association rules using genetic algorithm with adaptive mutation, (International Conference on Neural Information Processing (2015)), 96-105
[129] Kabir, M. M.J.; Xu, S.; Kang, B. H.; Zhao, Z., A new evolutionary algorithm for extracting a reduced set of interesting association rules, (International Conference on Neural Information Processing (2015)), 133-142
[130] Kabir, M. M.J.; Xu, S.; Kang, B. H.; Zhao, Z., A new multiple seeds based genetic algorithm for discovering a set of interesting Boolean association rules, Expert Syst. Appl., 74, 55-69 (2017)
[131] Kannimuthu, S.; Premalatha, K., Discovery of high utility itemsets using genetic algorithm with ranked mutation, Appl. Artif. Intell., 28, 4, 337-359 (2014)
[132] Kashan, A. H., League Championship Algorithm (LCA): an algorithm for global optimization inspired by sport championships, Appl. Soft Comput., 16, 171-200 (2014)
[133] Kaya, M., Multi-objective genetic algorithm based approaches for mining optimized fuzzy association rules, Soft Comput., 10, 7, 578-586 (2006) · Zbl 1110.68127
[134] Kaya, M.; Alhajj, R., Facilitating fuzzy association rules mining by using multi-objective genetic algorithms for automated clustering, (3rd IEEE International Conference on Data Mining (2003)), 561-564
[135] Kaya, M.; Alhajj, R., A clustering algorithm with genetically optimized membership functions for fuzzy association rules mining, (12th IEEE International Conference on Fuzzy Systems (2003)), 881-886
[136] Kaya, M.; Alhajj, R., Multi-objective genetic algorithm based method for mining optimized fuzzy association rules, (International Conference on Intelligent Data Engineering and Automated Learning (2004)), 758-764
[137] Kaya, M.; Alhajj, R., Integrating multi-objective genetic algorithms into clustering for fuzzy association rules mining, (4th IEEE International Conference on Data Mining (2004)), 431-434
[138] Kaya, M.; Alhajj, R., Genetic algorithm based framework for mining fuzzy association rules, Fuzzy Sets Syst., 152, 587-601 (2005) · Zbl 1101.68765
[139] Kaya, M.; Alhajj, R., Utilizing genetic algorithms to optimize membership functions for fuzzy weighted association rules mining, Appl. Intell., 24, 1, 7-15 (2006)
[140] Karaboga, D., An Idea Based on Honey Bee Swarm For Numerical Optimization (2005), Erciyes University, Technical Report-TR06
[141] Ke, K.; Cheng, J.; Ng, W., MIC framework: an information-theoretic approach to quantitative association rule mining, (22nd International Conference on Data Engineering (2006)), 112-114
[142] Ke, Y.; Cheng, J.; Ng, W., An information-theoretic approach to quantitative association rule mining, Knowl. Inf. Syst., 16, 2, 213-244 (2008)
[143] Kennedy, J., Particle swarm optimization, Encycloped. Mach. Learn., 760-766 (2010)
[144] Kennedy, J.; Eberhart, R. C., Particle swarm optimization, (IEEE International Conference on Neural Networks (1995)), 1942-1948
[145] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by simulated annealing, Science, 220, 4598, 671-680 (1983) · Zbl 1225.90162
[146] Kishor, P.; Sammulal, P., Association rule mining using an unsupervised neural network with an optimized genetic algorithm, (International Conference on Communications and Cyber Physical Engineering Springer (2018)), 657-669
[147] Koh, Y. S.; Ravana, S. D., Unsupervised rare pattern mining: a survey, ACM Trans. Knowl. Discov. Data, 10, 4, 1-29 (2016)
[148] Kumar, P.; Singh, A. K., Efficient generation of association rules from numeric data using genetic algorithm for smart cities, (Hassanien, A. E.; Elhoseny, M.; Ahmed, S. H.; Singh, A. K., Security in Smart Cities: Models, Applications, and Challenges (2019), Springer), 323-343
[149] Kuo, R. J.; Chao, C. M.; Chiu, Y. T., Application of particle swarm optimization to association rule mining, Appl. Soft Comput., 11, 1, 326-336 (2011)
[150] Kuo, R. J.; Gosumolo, M.; Zulvia, F. E., Multi-objective particle swarm optimization algorithm using adaptive archive grid for numerical association rule mining, Neural Comput. Appl., 1-14 (2017)
[151] Kuo, R. J.; Lin, S. Y.; Shih, C. W., Mining association rules through integration of clustering analysis and ant colony system for health insurance database in Taiwan, Expert Syst. Appl., 33, 3, 794-808 (2007)
[152] Kuo, R. J.; Shih, C. W., Association rule mining through the ant colony system for national health insurance research database in Taiwan, Comput. Math. Appl., 54, 11-12, 1303-1318 (2007) · Zbl 1211.62186
[153] Kwaśnicka, H.; Świtalski, K., Discovery of association rules from medical data-classical and evolutionary approaches, Society, 4, 1, 204-217 (2006)
[154] Lee, C. K.H.; Choy, K. L.; Ho, G. T.; Lam, C. H., A slippery genetic algorithm-based process mining system for achieving better quality assurance in the garment industry, Expert Syst. Appl., 46, 236-248 (2016)
[155] Lee, Y. C.; Hong, T. P.; Wang, T. C., Multi-level fuzzy mining with multiple minimum supports, Expert Syst. Appl., 34, 1, 459-468 (2008)
[156] Li, S. Z.; Chen, S. L., Mining fuzzy association rules by using nonlinear particle swarm optimization, Quantitative Logic and Soft Computing, 621-630 (2010)
[157] Li, T.; Li, X., Novel alarm correlation analysis system based on association rules mining in telecommunication networks, Inf. Sci., 180, 16, 2960-2978 (2010)
[158] Li, X.; Mabu, S.; Zhou, H.; K. Shimada, K. Hirasawa, Genetic network programming with estimation of distribution algorithms for class association rule mining in traffic prediction, (IEEE Congress on Evolutionary Computation (2010)), 1-8
[159] Li, H.; Zhang, Q., Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II, IEEE Trans. Evol. Comput., 13, 2, 284-302 (2009)
[160] Li, X.; Zhang, J.; Yin, M., Animal migration optimization: an optimization algorithm inspired by animal migration behavior, Neural Comput. Appl., 24, 7-8, 1867-1877 (2014)
[161] Lim, A. H.; Lee, C. S.; Raman, M., Hybrid genetic algorithm and association rules for mining workflow best practices, Expert Syst. Appl., 39, 12, 10544-10551 (2012)
[162] Lin, J. C.W.; Yang, L.; Fournier-Viger, P.; Hong, T. P.; Voznak, M., A binary PSO approach to mine high-utility itemsets, Soft Comput., 21, 17, 5103-5121 (2017)
[163] Lin, J. C.W.; Yang, L.; Fournier-Viger, P.; Wu, M. T.; Hong, T. P.; Wang, L. S.L., A swarm-based approach to mine high-utility itemsets, (International Conference on Multidisciplinary Social Networks Research (2015)), 572-581
[164] Lin, J. C.W.; Yang, L.; Fournier-Viger, P.; Wu, J. M.T.; Hong, T. P.; Wang, L. S.L.; Zhan, J., Mining high-utility itemsets based on particle swarm optimization, Eng. Appl. Artif. Intell., 55, 320-330 (2016)
[165] Liu, D., Improved genetic algorithm based on simulated annealing and quantum computing strategy for mining association rules, J. Softw., 5, 11, 1243-1249 (2010)
[166] Liu, Q.; Feng, G.; Wang, N.; Tayi, G. K., A multi-objective model for discovering high-quality knowledge based on data quality and prior knowledge, Inf. Syst. Front., 20, 2, 401-416 (2018)
[167] Lu, N.; Mabu, S.; Wang, T.; Hirasawa, K., An efficient class association rule‐pruning method for unified intrusion detection system using genetic algorithm, IEEJ Trans. Electr. Electr. Eng., 8, 2, 164-172 (2013)
[168] Luna, J. M.; Cano, A.; Ventura, S., Genetic programming for mining association rules in relational database environments, (Gandomi, A. H.; Alavi, A. H.; Ryan, C., Handbook of Genetic Programming Applications (2015), Springer), 431-450
[169] Luna, J. M.; Pechenizkiy, M.; del Jesus, M. J.; Ventura, S., Mining context-aware association rules using grammar-based genetic programming, IEEE Trans. Cybernet., 99, 1-15 (2017)
[170] Luna, J. M.; Pechenizkiy, M.; Ventura, S., Mining exceptional relationships with grammar-guided genetic programming, Knowl. Inf. Syst., 47, 3, 571-594 (2016)
[171] Luna, J. M.; Romero, J. R.; Romero, C.; Ventura, S., Reducing gaps in quantitative association rules: A genetic programming free-parameter algorithm, Integr. Comput.-Aided Eng., 21, 4, 321-337 (2014)
[172] Luna, J. M.; Romero, J. R.; Ventura, S., G3PARM: a grammar guided genetic programming algorithm for mining association rules, IEEE Congr. Evol. Comput., 1-8 (2010)
[173] Luna, J. M.; Romero, J. R.; Ventura, S., Design and behavior study of a grammar-guided genetic programming algorithm for mining association rules, Knowl. Inf. Syst., 32, 1, 53-76 (2012)
[174] Luna, J. M.; Romero, J. R.; Ventura, S., Grammar-based multi-objective algorithms for mining association rules, Data .Knowl. Eng., 86, 19-37 (2013)
[175] Luna, J. M.; Romero, J. R.; Ventura, S., On the adaptability of G3PARM to the extraction of rare association rules, Knowl. Inf. Syst., 38, 2, 391-418 (2014)
[176] Luna, J. M.; Romero, C.; Romero, J. R.; Ventura, S., An evolutionary algorithm for the discovery of rare class association rules in learning management systems, Appl. Intell., 42, 3, 501-513 (2015)
[177] Mabu, S.; Chen, C.; Lu, N.; Shimada, K.; Hirasawa, K., An intrusion-detection model based on fuzzy class-association-rule mining using genetic network programming, IEEE Trans. Syst. Man. Cybernet., 41, 1, 130-139 (2011)
[178] Mangat, V.; Vig, R., Novel associative classifier based on dynamic adaptive PSO: Application to determining candidates for thoracic surgery, Expert Syst. Appl., 41, 18, 8234-8244 (2014)
[179] Maragatham, G.; Lakshmi, M., A weighted particle swarm optimization technique for optimizing association rules, (International Conference on Computing and Communication Systems (2011)), 655-664
[180] Martin, D.; Alcalá-Fdez, J.; Rosete, A.; Herrera, F., NICGAR: a niching genetic algorithm to mine a diverse set of interesting quantitative association rules, Inf. Sci., 355, 208-228 (2016)
[181] Martin, D.; Rosete, A.; Alcalá-Fdez, J.; Herrera, F., A multi-objective evolutionary algorithm for mining quantitative association rules, (11th International Conference on Intelligent Systems Design and Applications (2011)), 1397-1402
[182] Martin, D.; Rosete, A.; Alcala-fdez, J.; Herrera, F., QAR-CIP-NSGA-II, a new multi objective evolutionary algorithm to mine quantitative association rules, Inf. Sci., 258, 1-28 (2014)
[183] Martin, D.; Rosete, A.; Alcala-Fdez, J.; Herrera, F., A new multiobjective evolutionary algorithm for mining a reduced set of interesting positive and negative quantitative association rules, IEEE Trans. Evol. Comput., 18, 1, 54-69 (2014)
[184] Martínez-Ballesteros, M.; Bacardit, J.; Troncoso, A.; Riquelme, J. C., Enhancing the scalability of a genetic algorithm to discover quantitative association rules in large-scale datasets, Integr. Comput.-Aided Eng., 22, 1, 21-39 (2015)
[185] Martínez-Ballesteros, M.; Martínez-Álvarez, F.; Troncoso, A.; Riquelme, J. C., Quantitative association rules applied to climatological time series forecasting, (International Conference on Intelligent Data Engineering and Automated Learning (2009)), 284-291
[186] Martínez-Ballesteros, M.; Martínez-Álvarez, F.; Troncoso, A.; Riquelme, J. C., An evolutionary algorithm to discover quantitative association rules in multidimensional time series, Soft Comput., 15, 10, 2065-2084 (2011)
[187] Martínez-Ballesteros, M.; Martínez-Álvarez, F.; Troncoso, A.; Riquelme, J. C., Selecting the best measures to discover quantitative association rules, Neurocomputing, 126, 3-14 (2014)
[188] Martínez-Ballesteros, M.; Nepomuceno-Chamorro, I. A.; Riquelme, J. C., Discovering gene association networks by multi-objective evolutionary quantitative association rules, J. Comput. System Sci., 80, 1, 118-136 (2014) · Zbl 1311.68140
[189] Martínez-Ballesteros, M.; Salcedo-Sanz, S.; Riquelme, J. C.; Casanova-Mateo, C.; Camacho, J. L., Evolutionary association rules for total ozone content modeling from satellite observations, Chemom. Intell. Lab. Syst., 109, 2, 217-227 (2011)
[190] Martínez-Ballesteros, M.; Troncoso, A.; Martínez-Álvarez, F.; Riquelme, J. C., Mining quantitative association rules based on evolutionary computation and its application to atmospheric pollution, Integr. Comput.-Aided Eng., 17, 3, 227-242 (2010)
[191] Martínez-Ballesteros, M.; Troncoso, A.; Martínez-Álvarez, F.; Riquelme, J. C., Improving a multi-objective evolutionary algorithm to discover quantitative association rules, Knowl. Inf. Syst., 49, 2, 481-509 (2016)
[192] Martínez-Ballesteros, M.; Troncoso, A.; Martínez-Álvarez, F.; Riquelme, J. C., Obtaining optimal quality measures for quantitative association rules, Neurocomputing, 176, 36-47 (2016)
[193] Mata, J.; Alvarez, J. L.; Riquelme, J. C., Mining numeric association rules with genetic algorithms, Artificial Neural Nets and Genetic Algorithms, 264-267 (2001) · Zbl 1011.68168
[194] Mata, J.; Alvarez, J. L.; Riquelme, J. C., An evolutionary algorithm to discover numeric association rules, (ACM symposium on Applied computing (2002)), 590-594
[195] Mata, J.; Alvarez, J. L.; Riquelme, J. C., Discovering numeric association rules via evolutionary algorithm, (Pacific-Asia Conference on Knowledge Discovery and Data Mining (2002)), 40-51 · Zbl 1048.68829
[196] Matthews, S. G.; Gongora, M. A.; Hopgood, A. A., Evolving temporal association rules with genetic algorithms, (International Conference on Innovative Techniques and Applications of Artificial Intelligence (2010)), 107-120
[197] Matthews, S. G.; Gongora, M. A.; Hopgood, A. A., Evolving temporal fuzzy association rules from quantitative data with a multi-objective evolutionary algorithm, (International Conference on Hybrid Artificial Intelligence Systems (2011)), 198-205
[198] Matthews, S. G.; Gongora, M. A.; Hopgood, A. A., Evolving temporal fuzzy itemsets from quantitative data with a multi-objective evolutionary algorithm, (5th International Workshop on Genetic and Evolutionary Fuzzy Systems (2011)), 9-16
[199] Minaei-Bidgoli, B.; Barmaki, R.; Nasiri, M., Mining numerical association rules via multi-objective genetic algorithms, Inf. Sci., 233, 15-24 (2013)
[200] Mlakar, U.; Zorman, M.; Fister Jr, I.; Fister, I., Modified binary cuckoo search for association rule mining, J. Intell. Fuzzy Syst., 32, 6, 4319-4330 (2017)
[201] Moslehi, F.; Haeri, A.; Martínez-Álvarez, F., A novel hybrid GA-PSO framework for mining quantitative association rules, Soft Comput., 1-22 (2019)
[202] Mukhopadhyay, A.; Maulik, U.; Bandyopadhyay, S.; Coello, C. A.C., A survey of multiobjective evolutionary algorithms for data mining: Part I, IEEE Trans. Evol. Comput., 18, 1, 4-19 (2014)
[203] Mukhopadhyay, A.; Maulik, U.; Bandyopadhyay, S.; Coello, C. A.C., Survey of multiobjective evolutionary algorithms for data mining: Part II, IEEE Trans. Evol. Comput., 18, 1, 20-35 (2014)
[204] Nandhini, M.; Janani, M.; Sivanandham, S. N., Association rule mining using swarm intelligence and domain ontology, (International Conference on Recent Trends in Information Technology (2012)), 537-541
[205] Nasiri, M.; Taghavi, L. S.; Minaee, B., Multi-objective rule mining using simulated annealing algorithm, J. Converg. Inf. Technol., 5, 1, 60-68 (2010)
[206] Neri, F.; Cotta, C., Memetic algorithms and memetic computing optimization: a literature review, Swarm Evol. Comput., 2, 1-14 (2012)
[207] Neri, F.; Tirronen, V., Scale factor local search in differential evolution, Memetic Comput., 1, 2, 153-171 (2009)
[208] Neri, F.; Tirronen, V., Recent advances in differential evolution: a survey and experimental analysis, Artif. Intell. Rev., 33, 1-2, 61-106 (2010)
[209] Nguyen, D.; Nguyen, L. T.; Vo, B.; Hong, T. P., A novel method for constrained class association rule mining, Inf. Sci., 320, 107-125 (2015) · Zbl 1390.68549
[210] Olmo, J. L.; Luna, J. M.; Romero, J. R.; Ventura, S., Association rule mining using a multi-objective grammar-based ant programming algorithm, (11th IEEE International Conference on Intelligent Systems Design and Applications (2011)), 971-977
[211] Olmo, J. L.; Luna, J. M.; Romero, J. R.; Ventura, S., Mining association rules with single and multi-objective grammar guided ant programming, Integr. Comput.-Aided Eng., 20, 3, 217-234 (2013)
[212] Olmo, J. L.; Romero, J. R.; Ventura, S., Classification rule mining using ant programming guided by grammar with multiple Pareto fronts, Soft Comput., 16, 12, 2143-2163 (2012)
[213] Olmo, J. L.; Romero, J. R.; Ventura, S., Single and multi-objective ant programming for mining interesting rare association rules, Int. J. Hybrid Intell. Syst., 11, 3, 197-209 (2014) · Zbl 1331.68192
[214] Ordonez, C.; Ezquerra, N.; Santana, C. A., Constraining and summarizing association rules in medical data, Knowl. Inf. Syst., 9, 3, 1-2 (2006)
[215] Orriols-Puig, A.; Casillas, J.; Bernadó-Mansilla, E., First approach toward on-line evolution of association rules with learning classifier systems, (10th ACM annual conference companion on Genetic and evolutionary computation (2008)), 2031-2038
[216] Padillo, F.; Luna, J. M.; Herrera, F.; Ventura, S., Mining association rules on big data through mapreduce genetic programming, Integr. Comput.-Aided Eng., 25, 1, 31-48 (2018)
[217] Padillo, F.; Luna, J. M.; Ventura, S., An evolutionary algorithm for mining rare association rules: a big data approach, (IEEE Congress on evolutionary computation (2017)), 2007-2014
[218] Palacios, A. M.; Palacios, J. L.; Sánchez, L.; Alcalá-Fdez, J., Genetic learning of the membership functions for mining fuzzy association rules from low quality data, Inf. Sci., 295, 358-378 (2015) · Zbl 1360.68703
[219] Pears, R.; Koh, Y. S., Weighted association rule mining using particle swarm optimization, (Pacific-Asia Conference on Knowledge Discovery and Data Mining Springer (2011)), 327-338
[220] Pedemonte, M.; Nesmachnow, S.; Cancela, H., A survey on parallel ant colony optimization, Appl. Soft Comput., 11, 8, 5181-5197 (2011)
[221] Pei, B.; Zhao, S.; Chen, H.; Zhou, X.; Chen, D., FARP: Mining fuzzy association rules from a probabilistic quantitative database, Inf. Sci., 237, 242-260 (2013)
[222] Pham, D. T.; Ghanbarzadeh, A.; Koc, E.; Otri, S.; Rahim, S.; Zaidi, M., The bees algorithm, Technical Note (2005), Manufacturing Engineering Centre, Cardiff University: Manufacturing Engineering Centre, Cardiff University UK
[223] Qianxiang, S.; Ping, W., Association rules mining based on improved PSO algorithm, (2nd IEEE International Conference on Computational Intelligence and Applications (2017)), 145-149
[224] Qodmanan, H. R.; Nasiri, M.; Minaei-Bidgoli, B., Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence, Expert Syst. Appl., 38, 1, 288-298 (2011)
[225] Ramaswamy, S.; Mahajan, S.; Silberschatz, A., On the discovery of interesting patterns in association rules, (Conference on Very Large Database (1998)), 368-379
[226] Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S., GSA: a gravitational search algorithm, Inf. Sci., 179, 13, 2232-2248 (2009) · Zbl 1177.90378
[227] Rashedi, E.; Rashedi, E.; Nezamabadi-pour, H., A comprehensive survey on gravitational search algorithm, Swarm Evol. Comput., 41, 141-158 (2018)
[228] Rizk-Allah, R. M.; Hassanien, A. E., New binary bat algorithm for solving 0-1 knapsack problem, Complex .Intell. Syst., 4, 1, 31-53 (2018)
[229] Romero, C.; Zafra, A.; Luna, J. M.; Ventura, S., Association rule mining using genetic programming to provide feedback to instructors from multiple‐choice quiz data, Expert Syst., 30, 2, 162-172 (2013)
[230] Ryang, H.; Yun, U.; Ryu, K. H., Discovering high utility itemsets with multiple minimum supports, Intell. Data Anal., 18, 6, 1027-1047 (2014)
[231] Sánchez, D.; Vila, M. A.; Cerda, L.; Serrano, J. M., Association rules applied to credit card fraud detection, Expert Syst. Appl., 36, 2, 3630-3640 (2009)
[232] Saggar, M.; Agrawal, A. K.; Lad, A., Optimization of association rule mining using improved genetic algorithms, (IEEE International Conference on Systems, Man and Cybernetics (2004)), 3725-3729
[233] Salleb-Aouissi, A.; Vrain, C.; Nortet, C., Quantminer: a genetic algorithm for mining quantitative association rules, (International Join Conference on Artificial Intelligence (2007)), 1035-1040
[234] Sarath, K. N.V. D.; Ravi, V., Association rule mining using binary particle swarm optimization, Eng. Appl. Artif. Intell., 26, 8, 1832-1840 (2013)
[235] Sheikhan, M.; Sharifi Rad, M., Using particle swarm optimization in fuzzy association rules‐based feature selection and fuzzy ARTMAP‐based attack recognition, Secur. Commun. Netw., 6, 7, 797-811 (2013)
[236] Shenoy, P. D.; Srinivasa, K. G.; Venugopal, K. R.; Patnaik, L. M., Evolutionary approach for mining association rules on dynamic databases, (Pacific-Asia Conference on Knowledge Discovery and Data Mining (2003)), 325-336 · Zbl 1032.68631
[237] Shenoy, P. D.; Srinivasa, K. G.; Venugopal, K. R.; Patnaik, L. M., Dynamic association rule mining using genetic algorithms, Intell. Data Anal., 9, 5, 439-453 (2005)
[238] Shimada, K.; Hirasawa, K.; Hu, J., Class association rule mining with chi-squared test using genetic network programming, (IEEE International Conference on Systems, Man and Cybernetics (2006)), 5338-5344
[239] Shortliffe, E. H.; Buchanan, B. G., A model of inexact reasoning in medicine, Math. Biosci., 23, 3-4, 351-379 (1975)
[240] Son, L. H.; Chiclana, F.; Kumar, R.; Mittal, M.; Khari, M.; Chatterjee, J. M.; Baik, S. W., ARM-AMO: an efficient association rule mining algorithm based on animal migration optimization, Knowl.-Based Syst., 154, 68-80 (2018)
[241] Sonar, P.; Bhosle, U., Optimization of association rule mining for mammogram classification, Int. J. Image Process., 11, 3, 67-85 (2017)
[242] Song, A.; Ding, X.; Chen, J.; Li, M.; Cao, W.; Pu, K., Multi-objective association rule mining with binary bat algorithm, Intell. Data Anal., 20, 1, 105-128 (2016)
[243] Song, W.; Huang, C., Discovering high utility itemsets based on the artificial bee colony algorithm, (Pacific-Asia Conference on Knowledge Discovery and Data Mining (2018)), 3-14
[244] Song, W.; Huang, C., Mining high utility itemsets using bio-inspired algorithms: a diverse optimal value framework, IEEE Access, 6, 19568-19582 (2018)
[245] Song, A.; Song, J.; Ding, X.; Xu, G.; Chen, J., Utilizing bat algorithm to optimize membership functions for fuzzy association rules mining, (International Conference on Database and Expert Systems Applications (2017)), 496-504
[246] Soto, W.; Olaya-Benavides, A., A genetic algorithm for discovery of association rules, (30th International Conference of the Chilean Computer Science Society (2011)), 289-293
[247] Srinivasan, S.; Ramakrishnan, S., Evolutionary multi objective optimization for rule mining: a review, Artif. Intell. Rev., 36, 3, 205-248 (2011)
[248] Storn, R.; Price, K., Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11, 4, 341-359 (1997) · Zbl 0888.90135
[249] Su, T.; Xu, H.; Zhou, X., Particle swarm optimization-based association rule mining in big data environment, IEEE Access, 7, 161008-161016 (2019)
[250] Sundaramoorthy, S.; Shantharajah, S. P., An improved ant colony algorithm for effective mining of frequent items, J. Web Eng., 13, 263-276 (2014)
[251] Taboada, K.; Gonzales, E.; Shimada, K.; Mabu, S.; Hirasawa, K.; Hu, J., Association rule mining for continuous attributes using genetic network programming, IEEJ Trans. Electr. Electr. Eng., 3, 2, 199-211 (2008)
[252] Taboada, K.; Mabu, S.; Gonzales, E.; Shimada, K.; Hirasawa, K., Mining fuzzy association rules: A general model based on genetic network programming and its applications, IEEJ Trans. Electr. Electr. Eng., 5, 3, 343-354 (2010)
[253] Tahyudin, I.; Nambo, H., The combination of evolutionary algorithm method for numerical association rule mining optimization, (10th International Conference on Management Science and Engineering Management (2017)), 13-23
[254] Tahyudin, I.; Nambo, H., The rule extraction of numerical association rule mining using hybrid evolutionary algorithm, (4th International Conference on Electrical Engineering, Computer Science and Informatics (2017)), 1-6
[255] Tayal, K.; Ravi, V., Particle swarm optimization trained class association rule mining: Application to phishing detection, (International Conference on Informatics and Analytics (2016))
[256] Telikani, A.; Gandomi, A. H.; Shahbahrami, A.; Naderi Dehkordi, M., Privacy-preserving in association rule mining using an improved discrete binary artificial bee colony, Expert Syst. Appl., Article 113097 pp. (2019)
[257] Telikani, A.; Shahbahrami, A., Data sanitization in association rule mining: an analytical review, Expert Syst. Appl., 96, 406-426 (2018)
[258] Ting, C. K.; Liaw, R. T.; Wang, T. C.; Hong, T. P., Mining fuzzy association rules using a memetic algorithm based on structure representation, Memetic Comput., 10, 1, 15-28 (2018)
[259] Ting, C. K.; Wang, T. C.; Liaw, R. T.; P. Hong, T., Genetic algorithm with a structure-based representation for genetic-fuzzy data mining, Soft Comput., 21, 11, 2871-2882 (2017)
[260] Triguero, I.; García, S.; Herrera, F., Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification, Pattern Recognit., 44, 4, 901-916 (2011)
[261] Tyagi, S.; Bharadwaj, K. K., Enhancing collaborative filtering recommendations by utilizing multi-objective particle swarm optimization embedded association rule mining, Swarm Evol. Comput., 13, 1-12 (2013)
[262] Varzaneh, H. H.; Neysiani, B. S.; Ziafat, H.; Soltani, N., Recommendation systems based on association rule mining for a target object by evolutionary algorithms, Emerg. Sci. J., 2, 2, 100-107 (2018)
[263] Ventura, S.; Luna, J. M., Genetic Programming in Pattern Mining, (Ventura, S.; Luna, J. M., Pattern Mining with Evolutionary Algorithms (2016), Springer), 87-117
[264] Venugopal, K. R.; Srinivasa, K. G.; Patnaik, L. M., Dynamic association rule mining using genetic algorithms, (Venugopal, K. R.; Srinivasa, K. G.; Patnaik, L. M., Soft Computing for Data Mining Applications (2009), Springer: Springer Berlin), 63-80
[265] Wakabi-Waiswa, P. P.; Baryamureeba, V., Extraction of interesting association rules using genetic algorithms, Int. J. Comput. ICT Res., 2, 1, 26-33 (2008)
[266] Wang, W.; Bridges, S., Genetic Algorithm Optimization of Membership Functions for Mining Fuzzy Association Rules, 2 (2000), Department of Computer Science Mississippi State University
[267] Wang, Y.; Feng, X. Y.; Huang, Y. X.; Pu, D. B.; Zhou, W. G.; Liang, Y. C.; Zhou, C. G., A novel quantum swarm evolutionary algorithm and its applications, Neurocomputing, 70, 4-6, 633-640 (2007)
[268] Wang, C.; Liu, Y.; Zhang, Q.; Guo, H.; Liang, X.; Chen, Y.; Xu, M.; Wei, Y., Association rule mining based parameter adaptive strategy for differential evolution algorithms, Expert Syst. Appl., 123, 54-69 (2019)
[269] Wang, B.; Merrick, K. E.; Abbass, H. A., Co-operative coevolutionary neural networks for mining functional association rules, IEEE Trans. Neural Netw. Learn. Syst/, 28, 6, 1331-1344 (2017)
[270] Wang, M.; Zou, Q.; Liu, C., Multi-dimension association rule mining based on adaptive genetic algorithm, (International Conference on Uncertainty Reasoning and Knowledge Engineering (2011)), 150-153
[271] Wen, F.; Zhang, G.; Sun, L.; Wang, X.; Xu, X., A hybrid temporal association rules mining method for traffic congestion prediction, Comput. Ind. Eng., 130, 779-787 (2019)
[272] Wu, C. H.; Chen, T. C.; Hsieh, Y. C.; Tsao, H. L., A hybrid rule mining approach for cardiovascular disease detection in traditional Chinese medicine, J. Intell. Fuzzy Syst., 1-10 (2019)
[273] Wu, M. T.; Hong, T. P.; Lee, C. N., An improved ant algorithm for fuzzy data mining, (International Conference on Computational Collective Intelligence (2010)), 344-351
[274] Wu, M. T.; Hong, T. P.; Lee, C. N., A continuous ant colony system framework for fuzzy data mining, Soft Comput., 16, 12, 2071-2082 (2012)
[275] Wu, J. M.T.; Zhan, J.; Lin, J. C.W., Mining of high-utility itemsets by ACO algorithm, (3rd Multidisciplinary International Social Networks Conference on Social Informatics (2016))
[276] Wu, J. M.T.; Zhan, J.; Lin, J. C.W., An ACO-based approach to mine high-utility itemsets, Knowl.-Based Syst., 116, 102-113 (2017)
[277] Xu, Y.; Zeng, M.; Liu, Q.; Wang, X., A genetic algorithm based multilevel association rules mining for big datasets, Math. Prob. Eng. (2014)
[278] Yan, X.; Zhang, C.; Zhang, S., ARMGA: identifying interesting association rules with genetic algorithms, Appl. Artif. Intell., 19, 7, 677-689 (2005)
[279] Yan, X.; Zhang, C.; Zhang, S., Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support, Expert Syst. Appl., 36, 3066-3076 (2009)
[280] Yan, D.; Zhao, X.; Lin, R.; Bai, D., PPQAR: parallel PSO for quantitative association rule mining, Peer-to-Peer Network. Appl., 12, 5, 163-169 (2019)
[281] Yang, X. S., Firefly algorithms for multimodal optimization, (International Symposium on Stochastic Algorithms (2009)), 169-178 · Zbl 1260.90164
[282] Yang, X. S., A new meta-heuristic bat-inspired algorithm, (González, J. R.; Pelta, D. A.; Cruz, C.; Terrazas, G.; Krasnogor, N., Nature Inspired Cooperative Strategies for Optimization (2010), Springer: Springer Berlin), 65-74 · Zbl 1197.90348
[283] (Yang, X. S.; Cui, Z.; Xiao, R.; Gandomi, A. H.; Karamanoglu, M., Swarm Intelligence and Bio-Inspired Computation: Theory and Applications (2013), Newnes)
[284] Yang, X. S.; Deb, S., Cuckoo search via Le´vy flights, (World Congress on Nature & Biologically Inspired Computing (2009)), 210-214
[285] Yang, X. S.; Gandomi, A. H., Bat algorithm: a novel approach for global engineering optimization, Eng. Comput., 29, 5, 464-483 (2012)
[286] Yang, G.; Mabu, S.; Shimada, K.; Hirasawa, K., An evolutionary approach to rank class association rules with feedback mechanism, Expert Syst. Appl., 38, 12, 15040-15048 (2011)
[287] Yang, G.; Mabu, S.; Shimada, K.; Hirasawa, K., A novel evolutionary method to search interesting association rules by keywords, Expert Syst. Appl., 38, 10, 13378-13385 (2011)
[288] Yang, G.; Shimada, K.; Mabu, S.; Hirasawa, K., A personalized association rule ranking method based on semantic similarity and evolutionary computation, (IEEE Congress on Evolutionary Computation IEEE World Congress on Computational Intelligence (2008)), 487-494
[289] Yang, G.; Shimada, K.; Mabu, S.; Hirasawa, K., A nonlinear model to rank association rules based on semantic similarity and genetic network programing, IEEJ Trans. Electr. Electron. Eng., 4, 2, 248-256 (2009)
[290] Ykhlef, M., A Quantum swarm evolutionary algorithm for mining association rules in large databases, J. King Saud Univ.-Comput. Inf. Sci., 23, 1, 1-6 (2011)
[291] Yuce, B.; Packianather, M.; Mastrocinque, E.; Pham, D.; Lambiase, A., Honey bees inspired optimization method: the bees algorithm, Insects, 4, 4, 646-662 (2013)
[292] Zadeh, L. A., Fuzzy sets, Inf. Control, 8, 3, 338-353 (1965) · Zbl 0139.24606
[293] Zaki, M. J., Scalable algorithms for association mining, Knowl. Data Eng., 12, 3, 372-390 (2000)
[294] Zhang, Z.; Chai, N.; Ostrosi, E.; Shang, Y., Extraction of association rules in the schematic design of product service system based on Pareto-MODGDFA, Comput. Ind. Eng., 129, 392-403 (2019)
[295] Zhang, L.; Fu, G.; Cheng, F.; Qiu, J.; Su, Y., A multi-objective evolutionary approach for mining frequent and high utility itemsets, Appl. Soft Comput., 62, 974-986 (2018)
[296] Zhang, F.; Gong, T.; Lee, V. E.; Zhao, G.; Rong, C.; Qu, G., Fast algorithms to evaluate collaborative filtering recommender systems, Knowl.-Based Syst., 96, 96-103 (2016)
[297] Zhang, A.; Shi, W., Mining significant fuzzy association rules with differential evolution algorithm, Appl. Soft Comput., Article 105518 pp. (2019)
[298] Zhang, J.; Wang, Y.; Feng, J., Attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, Scientific World J. (2013)
[299] Zhang, Q.; Yang, L. T.; Chen, Z.; Li, P., A survey on deep learning for big data, Inf. Fusion, 42, 146-157 (2018)
[300] Zhang, L.; Yang, S.; Wu, X.; Cheng, F.; Xie, Y.; Lin, Z., An indexed set representation based multi-objective evolutionary approach for mining diversified top-k high utility patterns, Eng. Appl. Artif. Intell., 77, 9-20 (2019)
[301] Zheng, H.; He, J.; Huang, G.; Zhang, Y.; Wang, H., Dynamic optimisation based fuzzy association rule mining method, Int. J. Mach. Learn. Cybernet., 10, 8, 2187-2198 (2019)
[302] Zhou, Z.; Zhang, D.; Sun, Z.; Wang, J., An adaptive hybrid PSO and GSA algorithm for association rules mining, (International Conference on Cloud Computing and Security (2015)), 469-479
[303] Zitzler, E.; Thiele, L., Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE Trans. Evol. Comput., 3, 4, 257-271 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.