×

A dependent frequency-severity approach to modeling longitudinal insurance claims. (English) Zbl 1410.91271

Summary: In nonlife insurance, frequency and severity are two essential building blocks in the actuarial modeling of insurance claims. In this paper, we propose a dependent modeling framework to jointly examine the two components in a longitudinal context where the quantity of interest is the predictive distribution. The proposed model accommodates the temporal correlation in both the frequency and the severity, as well as the association between the frequency and severity using a novel copula regression. The resulting predictive claims distribution allows to incorporate the claim history on both the frequency and severity into ratemaking and other prediction applications. In this application, we examine the insurance claim frequencies and severities for specific peril types from a government property insurance portfolio, namely lightning and vehicle claims, which tend to be frequent in terms of their count. We discover that the frequencies and severities of these frequent peril types tend to have a high serial correlation over time. Using dependence modeling in a longitudinal setting, we demonstrate how the prediction of these frequent claims can be improved.

MSC:

91B30 Risk theory, insurance (MSC2010)
62P05 Applications of statistics to actuarial sciences and financial mathematics
62H05 Characterization and structure theory for multivariate probability distributions; copulas

Software:

CopulaModel
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Boucher, J.-P., Regression with count dependent variables, (Frees, E. W.; Meyers, G.; Derrig, R. A., Predictive Modeling Applications in Actuarial Science, (2014), Cambridge University Press: Cambridge University Press Cambridge)
[2] Boucher, J.-P.; Denuit, M.; Guillén, M., Models of insurance claim counts with time dependence based on generalization of Poisson and negative binomial distributions, Variance, 2, 1, 135-162, (2008)
[3] Boucher, J.-P.; Guillén, M., A semi-nonparametric approach to model panel count data, Comm. Statist. Theory Methods, 40, 4, 622-634, (2011) · Zbl 1217.62048
[4] Cook, M. A., Survey of Personal Insurance and Financial Planning, (2012), The Institutes
[5] Czado, C.; Kastenmeier, R.; Brechmann, E. C.; Min, A., A mixed copula model for insurance claims and claim sizes, Scand. Actuar. J., 2012, 4, 278-305, (2012) · Zbl 1277.62249
[6] Erhardt, V.; Czado, C., Modeling dependent yearly claim totals including zero claims in private health insurance, Scand. Actuar. J., 2012, 2, 106-129, (2012) · Zbl 1277.91084
[7] Flitner, A. L., Survey of Commercial Insurance, (2014), The Institutes
[8] Frees, E., Frequency and severity models, (Frees, E.; Meyers, G.; Derrig, R. A., Predictive Modeling Applications in Actuarial Science, Volume I: Predictive Modeling Techniques, (2014), Cambridge University Press: Cambridge University Press Cambridge), 138-166
[9] Frees, E. W.; Gao, J.; Rosenberg, M. A., Predicting the frequency and amount of health care expenditures, N. Am. Actuar. J., 15, 3, 377-392, (2011)
[10] Frees, E. W.; Lee, G. Y.; Yang, L., Multivariate frequency-severity regression models in insurance, Risks, 2016, 4, (2016)
[11] Frees, E. W.; Meyers, G.; Cummings, D., Dependent multi-peril ratemaking models, Astin Bull., 699-726, (2010) · Zbl 1235.91088
[12] Frees, E. W.; Meyers, G.; Cummings, A. D., Summarizing insurance scores using a Gini index, J. Amer. Statist. Assoc., 106, 495, (2011) · Zbl 1229.62140
[13] Garrido, J.; Genest, C.; Schulz, J., Generalized linear models for dependent frequency and severity of insurance claims, Insurance Math. Econom., 70, 205-215, (2016) · Zbl 1373.62515
[14] Godambe, V. P., An optimum property of regular maximum likelihood estimation, Ann. Math Stat., 31, 4, 1208-1211, (1960) · Zbl 0118.34301
[15] Gschlößl, S.; Czado, C., Spatial modelling of claim frequency and claim size in non-life insurance, Scand. Actuar. J., 2007, 3, 202-225, (2007) · Zbl 1150.91026
[16] Hua, L., Tail negative dependence and its applications for aggregate loss modeling, Insurance Math. Econom., 61, 135-145, (2015) · Zbl 1314.91139
[17] Joe, H., Asymptotic efficiency of the two-stage estimation method for copula-based models, J. Multivariate Anal., 94, 2, 401-419, (2005) · Zbl 1066.62061
[18] Joe, H., Dependence Modeling with Copulas, (2014), CRC Press · Zbl 1346.62001
[19] Joe, H.; Xu, J. J., The Estimation Method of Inference Functions for Margins for Multivariate Models, Technical Report, 166, (1996), UBC, Department of Statistics
[20] Klugman, S. A.; Panjer, H. H.; Willmot, G. E., Loss Models: From Data to Decisions, (2012), John Wiley & Sons · Zbl 1272.62002
[21] Krämer, N.; Brechmann, E. C.; Silvestrini, D.; Czado, C., Total loss estimation using copula-based regression models, Insurance Math. Econom., 53, 3, 829-839, (2013) · Zbl 1290.91092
[22] Lee, G., General insurance deductible ratemaking, N. Am. Actuar. J., 21, 4, 620-638, (2017) · Zbl 1414.91211
[23] Nelsen, R. B., An Introduction to Copulas, Vol. 139, (1999), Springer Science & Business Media
[24] Newey, W. K.; McFadden, D., Large sample estimation and hypothesis testing, Handb. Econom., 4, 2111-2245, (1994)
[25] Panagiotelis, A.; Czado, C.; Joe, H., Pair copula constructions for multivariate discrete data, J. Amer. Statist. Assoc., 107, 499, 1063-1072, (2012) · Zbl 1395.62114
[26] Shi, P., Fat-tailed regression models, (Frees, E. W.; Meyers, G.; Derrig, R. A., Predictive Modeling Applications in Actuarial Science, (2014), Cambridge University Press: Cambridge University Press Cambridge)
[27] Shi, P.; Feng, X.; Ivantsova, A., Dependent frequency-severity modeling of insurance claims, Insurance Math. Econom., 64, 417-428, (2015) · Zbl 1348.91180
[28] Shi, P.; Valdez, E. A., Longitudinal modeling of insurance claim counts using jitters, Scand. Actuar. J., 2014, 2, 159-179, (2014) · Zbl 1401.91195
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.