×

Two schemes of multiparty quantum direct secret sharing via a six-particle GHZ state. (English) Zbl 1451.81220

Summary: In this paper, two new efficient multiparty quantum direct secret sharing schemes are proposed via a six-particle GHZ state and Bell measurements. In the first scheme, based on the theory of security cryptanalysis, the secret message of the sender is directly encoded into the transmitted particles, and all the agents can obtain their information by performing bell measurement on the received particles, and then cooperate to recover the information of the sender. In the second scheme, we define a new secret shared coding method by performing local unitary operations on the transmitted particles, then agents perform Bell measurements on their own particles respectively, and feedback the measurement to the dealer. If the agent’s results are matched with the previous coding method, the protocol will work out. In addition, the proposed two schemes have the following common advantages: the sender can send all prepared particles to the receiver, and can send an arbitrary key to the receiver, rather than a random secret key; the proposed schemes do not need to insert any detection sets to detect eavesdropping and can resist both existing attacks and spoofing attacks by dishonest agents. The sender need not to retain any photons, so the sender’s quantum memory could be omitted here.

MSC:

81P94 Quantum cryptography (quantum-theoretic aspects)
81P48 LOCC, teleportation, dense coding, remote state operations, distillation
81P73 Computational stability and error-correcting codes for quantum computation and communication processing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829 · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[2] Nie Y Y, Li Y H and Liu J C 2011 Int. J. Theor. Phys.50 2526 · Zbl 1228.81296 · doi:10.1007/s10773-011-0742-x
[3] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162 · doi:10.1103/PhysRevA.59.162
[4] Xiao L, Long G L, Pan F G and Pan J W 2004 Phys. Rev. A 69 052307 · doi:10.1103/PhysRevA.69.052307
[5] Lance A M, Symul T and Bowen W P 2004 Phys. Rev. Lett.92 177903 · doi:10.1103/PhysRevLett.92.177903
[6] Qin H W, Zhu X H and Dai Y W 2015 Quantum Inf. Proc.14 2997 · Zbl 1327.81167 · doi:10.1007/s11128-015-1037-6
[7] Deng F G, Zhou H Y and Long G L 2006 J. Phys. A Math. Gen.39 14089 · Zbl 1106.81018 · doi:10.1088/0305-4470/39/45/018
[8] Chen J H, Lee K C and Hwang T 1999 Int. J. Mod. Phys. C 20 1531 · Zbl 1180.81053 · doi:10.1142/S0129183109014576
[9] Lin J and Hwang T 2011 Opt. Commun.284 1468 · doi:10.1016/j.optcom.2010.10.095
[10] Shamir A 1979 Commun. ACM22 612 · Zbl 0414.94021 · doi:10.1145/359168.359176
[11] Blakley G R 1979 Proceedings of AFIPS National Computer Conference(New York,)48 313
[12] Zhang F, Wang D, Liu K and Liu C 2016 Int. J. Theor. Phys.55 595 · Zbl 1335.81050 · doi:10.1007/s10773-015-2696-x
[13] Verma V and Prakash H 2016 Int. J. Theor. Phys.55 2061 · Zbl 1338.81116 · doi:10.1007/s10773-015-2846-1
[14] Tian J H, Zhang J Z and Li Y P 2016 Int. J. Theor. Phys.55 2303 · Zbl 1401.81030 · doi:10.1007/s10773-015-2868-8
[15] Binayak S C and Arpan D 2016 Int. J. Theor. Phys.55 3393 · Zbl 1358.81055 · doi:10.1007/s10773-016-2967-1
[16] Wootton J R and Loss D 2018 Phys. Rev. A 97 052313 · doi:10.1103/PhysRevA.97.052313
[17] Zhang Z J and Man Z X 2005 Phys. Rev. A 72 022303 · doi:10.1103/PhysRevA.72.022303
[18] Dehkordi M H and Fattahi E 2012 Sci. China Phys. Mech. Astron.55 1828 · doi:10.1007/s11433-012-4767-9
[19] Shi R H et al 2010 Opt. Commun.283 2476 · doi:10.1016/j.optcom.2010.02.015
[20] Song Y, Li Y and Wang W 2018 Int. J. Theor. Phys.57 1559 · Zbl 1391.81069 · doi:10.1007/s10773-018-3681-y
[21] Liu X F 2019 Int. J. Theor. Phys.58 713 · Zbl 1412.81128 · doi:10.1007/s10773-018-3969-y
[22] Wang S H, Chong S K and Hwang T 2010 Opt. Commun.283 4405 · doi:10.1016/j.optcom.2010.06.056
[23] Wang T Y, Wen Q Y and Zhu F C 2011 Opt. Commun.284 1711 · doi:10.1016/j.optcom.2010.11.038
[24] Wang W H et al 2013 Int. J. Theor. Phys.52 2099 · Zbl 1270.81073 · doi:10.1007/s10773-013-1504-8
[25] Lin J and Hwang T 2011 Opt. Commun.284 1468 · doi:10.1016/j.optcom.2010.10.095
[26] Hao L, Li J L and Long G L 2010 Sci. China Phys.53 491 · doi:10.1007/s11433-010-0145-7
[27] Hou K, Li Y B and Shi S H 2010 Opt. Commun.283 1961 · doi:10.1016/j.optcom.2009.12.024
[28] Gottesman D 2000 Phys. Rev. A 61 042311 · doi:10.1103/PhysRevA.61.042311
[29] Chau H F 2002 Phys. Rev. A 66 060302 · doi:10.1103/PhysRevA.66.060302
[30] Deng F G, Zhou H Y and Long G L 2005 Phys. Lett. A 337 329 · Zbl 1136.81333 · doi:10.1016/j.physleta.2005.02.001
[31] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2005 Phys. Rev. A 72 044301 · doi:10.1103/PhysRevA.72.044301
[32] Hsu L Y and Li C M 2005 Phys. Rev. A 71 022321 · doi:10.1103/PhysRevA.71.022321
[33] Zhang Z J, Yang J, Man Z X and Li Y 2005 Eur. Phys. J. D 33 133 · doi:10.1140/epjd/e2005-00029-5
[34] Zhang Z J 2006 Opt. Commun.261 199 · doi:10.1016/j.optcom.2005.11.060
[35] Han L F, Liu Y M, Liu J and Zhang Z J 2008 Opt. Commun.281 2690 · doi:10.1016/j.optcom.2007.12.045
[36] Xiao L, Wang C, Zhang W, Huang H D, Peng J D and Long G L 2008 Phys. Rev. A 77 042315 · doi:10.1103/PhysRevA.77.042315
[37] Sun Y, Wen Q Y, Gao F, Chen X B and Zhu F C 2009 Opt. Commun.282 3647 · doi:10.1016/j.optcom.2009.05.054
[38] Cabello A 2000 Phys. Rev. Lett.85 5635 · doi:10.1103/PhysRevLett.85.5635
[39] Hsieh C R, Tasi C W and Hwang T 2010 Commun. Theor. Phys.54 1019 · Zbl 1220.81069 · doi:10.1088/0253-6102/54/6/13
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.