×

An accurate approach for thermal analysis of porous longitudinal, spine and radial fins with all nonlinearity effects – analytical and unified assessment. (English) Zbl 1510.74022

Summary: The present study deals with a thermal analysis of porous fins subjected to internal heat generation, convection, and radiation energy transfer considering an actual system of analysis under the moving condition of the fin. The main aspiration to carryout this analysis is to establish a correct approach to derive the governing equation for energy transfer in porous fins. The physical explanation was given to require the modification of all existing analyses of porous fins to exchange heat with the surroundings. Three types of fins, namely longitudinal, annular, and spine, have been analyzed with the common mathematical expressions. The temperature distribution in fins has been obtained by employing the differential transform method for solving a high class nonlinear governing equation for all temperature dependent design variables adopted to develop an actual case study. The present approximate analytical method has been authenticated by the numerical technique based on the finite difference method. An excellent agreement of results between these two analyses has been investigated. Unlike all the published works allied with the porous fin, the present work establishes a correct thermal analysis with the key parameter porosity. A clear demonstration has been discussed to distinguish between the solid and porous fins which can be only conjunction with the porosity. The present method of analysis is equally suited for the solid fin also considering only the zero value of porosity to convert the porous fin into a solid fin directly. An optimization study has also been carried out for the maximization of heat transfer rate for a given volume of the solid fraction of a porous fin. The optimum results indicate that under a given design condition, there is an optimum value of porosity for which the heat transfer rate attains a maximum and it is always higher than the solid fin. Therefore, the enhancement of heat transfer can be significantly done by using porous fins for a constant volume of solid or weight of a fin. Finally, the results have been presented in a direction adopted to clearly visualize the superiority of the present study over that of the existing analyses, and to exhibit a difference between solid and porous fins.

MSC:

74F05 Thermal effects in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
80A19 Diffusive and convective heat and mass transfer, heat flow
76S05 Flows in porous media; filtration; seepage
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kiwan, S.; Al-Nimr, M. A., Using porous fins for heat transfer enhancement, ASME J. Heat Transf., 123, 790-795 (2001)
[2] Kiwan, S., Thermal analysis of natural convection porous fins, Transp. Porous Media, 67, 17-27 (2007)
[3] Kiwan, S., Effect of radiative losses on the heat transfer from porous fins, Int. J. Thermal Sci., 46, 1046-1055 (2007)
[4] Kundu, B.; Bhanja, D., An analytical prediction for performance and optimum design analysis of porous fins, Int. J. Refrigerat., 34, 337-352 (2011)
[5] Gorla, R. S.R.; Bakier, A. Y., Thermal analysis of natural convection and radiation in porous fins, Int. Commun. Heat Mass Transf., 38, 638-645 (2011)
[6] Bhanja, D.; Kundu, B., Thermal analysis of a constructal T-shaped porous fin with radiation effects, Int. J. Refrigerat., 33, 1483-1496 (2011)
[7] Rahimi Petroudi, I.; Ganji, D. D.; Shotorban, A. B.; Nejad, M. K.; Rahimi, E.; Rohollahtabar, R.; Taherinia, F., Semi-analytical method for solving nonlinear equation arising of natural convection porous fin, Thermal Sci., 16, 5, 1303-1308 (2012)
[8] Kundu, B.; Bhanja, D.; Lee, K.-. S., A model on the basis of analytics for computing maximum heat transfer in porous fins, Int. J. Heat Mass Transf., 55, 7611-7622 (2012)
[9] Bhanja, D.; Kundu, B.; Mandal, P. K., Thermal analysis of porous pin fin used for electronic cooling, Procedia Eng., 64, 956-965 (2013)
[10] Saedodin, S.; Shahbabaei, M., Thermal analysis of natural convection in porous fins with homotopy perturbation method (HPM), Arab J. Sci. Eng., 38, 2227-2231 (2013)
[11] Das, R.; Ooi, K. T., Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement, Energy Convers. Manag., 66, 211-219 (2013)
[12] Al-Ghamdi, A. S., Numerical investigation of transient heat transfer in rectangular porous fin using MATLAB, Recent Patent Mech. Eng., 6, 238-251 (2013)
[13] Hatami, M.; Hasanpour, A.; Ganji, D. D., Heat transfer study through porous fins (Si_3N_4 and Al) with temperature-dependent heat generation, Energy Convers. Manag., 74, 9-16 (2013)
[14] Hatami, M.; Ganji, D. D., Thermal performance of circular convective radiative porous fins with different section shapes and materials, Energy Convers. Manag., 76, 185-193 (2013)
[15] Darvishi, M. T.; Gorla, R. S.P.; Khani, F., Natural convection and radiation in porous fins, Int. J. Numer. Methods Heat Fluid Flow, 23, 8, 1406-1420 (2013)
[16] Darvishi, M. T.; Gorla, R. S.R.; Khani, F., Unsteady thermal response of a porous fin under the influence of natural convection and radiation, Heat Mass Transf., 50, 1311-1317 (2014)
[17] Rostamiyan, Y.; Ganji, D. D.; Rahimi Petroudi, I.; Khazayi Nejad, M., Analytical investigation of non-linear model arising in heat transfer through the porous fin, Thermal Sci., 18, 2, 409-417 (2014) · Zbl 06704692
[18] Bhanja, D.; Kundu, B.; Aziz, A., Enhancement of heat transfer from a continuously moving porous fin exposed in convective-radiative environment, Energy Convers. Manag., 88, 842-853 (2014)
[19] Das, R., Forward and inverse solutions of a conductive, convective and radiative cylindrical porous fin, Energy Convers. Manag., 87, 96-106 (2014)
[20] Moradi, A.; Fallah, A. P.M.; Hayat, T.; Aldossary, O. M., On solution of natural convection and radiation heat transfer problem in a moving porous fin, Arab J. Sci. Eng., 39, 1303-1312 (2014) · Zbl 1391.76561
[21] Turkyilmazoglu, M., Efficiency of heat and mass transfer in fully wet porous fins: exponential fins versus straight fins, Int. J. Refrigerat., 46, 158-164 (2014)
[22] Ghasemi, S. E.; Valipour, P.; Hatami, M.; Ganji, D. D., Heat transfer study on solid and porous convective fins with temperature dependent heat generation using efficient analytical method, J. Cent. South Univ., 21, 4592-4598 (2014)
[23] Hatami, M.; Mehdizadeh Ahangar, Gh. R.; Ganji, D. D.; Boubaker, K., Refrigeration efficiency analysis of fully wet semi-spherical porous fins, Energy Convers. Manag., 84, 533-540 (2014)
[24] Moradi, A.; Hayat, T.; Alsaedi, A., Convection-radiation thermal analysis, of triangular porous fins with temperature dependent thermal conductivity by DTM, Energy Convers. Manag., 77, 70-77 (2014)
[25] Hatami, M.; Ganji, D. D., Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis, Int. J. Refrigerat., 40, 140-151 (2014)
[26] Hatami, M.; Ganji, D. D., Thermal behaviour of longitudinal convective-radiative porous fins with different section shapes and ceramic materials (SiC and Si_3N_4), Ceram Int., 40, 6765-6775 (2014)
[27] Darvishi, M. T.; Gorla, R. S.R.; Khani, F.; Aziz, A., Thermal performance of a porous radial fin with natural convection and radiation heat losses, Thermal Sci., 19, 2, 669-678 (2015)
[28] Vahabzadeh, A.; Ganji, D. D.; Abbasi, M., Analytical investigation of porous pin fins with variable section in fully-wet conditions, Case Stud. Thermal Eng., 5, 1-12 (2015)
[29] Das, R.; Prasad, D. K., Prediction of porosity and thermal diffusivity in a porous using differential evolution algorithm, Swarm Evol. Comput., 23, 27-39 (2015)
[30] Kundu, B.; Lee, K.-. S., Exact analysis for minimum shape of porous fins under convection and radiation heat exchange with surrounding, Int. J. Heat Mass Transf., 81, 439-448 (2015)
[31] Patel, T.; Meher, R., A study on temperature distribution, efficiency and effectiveness of longitudinal porous fins by using Adomian decomposition sumudu transform method, Procedia Eng., 127, 751-758 (2015)
[32] Cuce, E.; Cuce, P. M., A successful application of homotopy perturbation method for efficiency and effectiveness assessment of longitudinal porous fins, Energy Convers. Manag., 93, 92-99 (2015)
[33] Hoshyar, H. A.; Ganji, D. D.; Majidian, A. R., Least square method for porous fin in the presence of uniform magnetic field, J. Appl. Fluid Mech., 9, 2, 661-668 (2016)
[34] Darvishi, M. T.; Gorla, R. S.R.; Khani, F.; Gireesha, B. J., Thermal analysis of natural convection and radiation in a fully wet porous fin, Int. J. Numer. Methods Heat Fluid Flow, 26, 8, 2419-2431 (2016)
[35] Kundu, B.; Lee, K.-. S., A proper analytical analysis of annular step porous fins for determining maximum heat transfer, Energy Convers. Manag., 110, 469-480 (2016)
[36] Ma, J.; Sun, Y.; Li, B.; Chen, H., Spectral collocation method for radiative-convective porous fin with temperature dependent properties, Energy Convers. Manag., 111, 279-288 (2016)
[37] Patel, T.; Meher, R., Adomian decomposition sumudu transform method for solving a solid and porous fin with temperature dependent internal heat generation, Springerplus, 5, 489 (2016)
[38] Singh, K.; Das, R.; Kundu, B., Approximate analytical method for porous stepped fins with temperature-dependent heat transfer parameters, J. Thermophys. Heat Transf., 30, 3, 661-672 (2016)
[39] Turkyilmazoglou, M., A direct solution of temperature field and physical quantities for the nonlinear porous fin problem, Int. J. Numer. Methods Heat Fluid Flow, 27, 2, 516-529 (2017)
[40] Jooma, R.; Harley, C., Heat transfer in a porous radial fin: analysis of numerically obtained solution, Advances in Mathematical Physics, Article 1658305 pp. (2017) · Zbl 1403.80005
[41] Ma, J.; Sun, Y.; Li, B., Simulation of combined conductive, convective and radiative heat transfer in moving irregular porous fins by spectral element method, Int. J. Thermal Sci., 118, 475-487 (2017)
[42] Patel, T.; Meher, R., Thermal analysis of porous fin with uniform magnetic field using Adomian decomposition Sumudu transform method, Nonlinear Eng., 6, 3, 191-200 (2017)
[43] Asadian, H.; Zaretabar, M.; Ganji, D. D.; Gorji-Bandpy, M.; Sohrabi, S., Investigation of heat transfer in rectangular porous fins (Si_3N_4) with temperature dependent internal heat generation by Galerkin’s method (GM) and Akbari-Ganji’s method (AGM), Int. J. Appl. Comput. Math., 3, 2987-3000 (2017) · Zbl 1397.80010
[44] Shateri, A. R.; Salahshour, B., Comprehensive thermal performance of convection-radiation longitudinal porous fins with various profile and multiple nonlinearities, Int. J. Mech. Sci., 136, 252-263 (2018)
[45] Das, R.; Kundu, B., Prediction of heat generation in a porous fin from surface temperature, J. Thermophys. Heat Transf., 31, 4, 781-790 (2017)
[46] Baghban, M.; Shams, Z.; Ebrahimifakhar, A., Inverse analysis of a porous fin to estimate time-dependent base temperature, J. Thermophys. Heat Transf., 32, 1, 27-34 (2018)
[47] Shokouhmand, H.; Sattari, A.; Hosseini-Doost, S. E.; Maghooli, A., Analysis of two-dimensional porous fins with variable thermal conductivity, Heat Transf. Asian Res., 47, 404-419 (2018)
[48] Deshamukhya, T.; Bhanja, D.; Nath, S.; Hazarika, S. A., Prediction of optimum design variables for maximum heat transfer through a rectangular porous fin using particle swarm optimization, J. Mech. Sci. Technol., 32, 9, 4495-4502 (2018)
[49] Hoseinzadeh, S.; Heyns, P. S.; Chamkha, A. J.; Shirkhani, A., Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods, J. Therm Anal. Calorim., 138, 727-735 (2019)
[50] Oguntala, G.; Danjuma, I.; Sobamowo, G.; Abd-Alhameed, R.; Noras, J., Nonlinear thermal analysis of a convective-radiative longitudinal porous fin of functionally graded material for efficient cooling of consumer electronics, Int. J. Ambient Energy, Article 1636863 pp. (2019)
[51] Oguntala, G.; Sobamowo, G.; Abd-Alhameed, R.; Noras, J., Numerical investigation of inclination on the thermal performance of porous fin heatsink using pseudospectral collocation method, Karbala Int. J. Modern Sci., 5, 1, 18-26 (2019)
[52] Oguntala, G.; Sobamowo, G.; Abd-Alhameed, R.; Jones, S., Efficient iterative method for investigation of convective-radiative porous fin with internal heat generation under a uniform magnetic field, Int. J. Appl. Comut. Math., 5, 13 (2019) · Zbl 1446.76162
[53] Hoseinzadeh, S.; Moafi, A.; Shirkhani, A.; Chamkha, A. J., Numerical validation heat transfer of rectangular cross-section porous fins, J. Thermophys. Heat Transf., 33, 3, 698-704 (2019)
[54] Hoshyar, H. A.; Rahimipetroudi, I.; Ganji, D. D., Heat transfer performance on longitudinal porous fins with temperature dependent heat generation, heat transfer coefficient and surface emissivity, Iran. J. Sci. Technol. Trans. Mech. Eng., 43, 383-391 (2019)
[55] Ndlova, P. L.; Moitsheki, R. J., Thermal analysis of natural convection and radiation heat transfer in moving porous fins, Front. Heat Mass Transf., 12, 1-8 (2019)
[56] Abbasbandy, S.; Shivanian, E., The exact closed solution in the analysis of a natural convection porous fin with temperature-dependent thermal conductivity and internal heat generation, Can. J. Phys., 97, 566-575 (2019)
[57] Oguntala, G.; Sobamowo, G.; Abd-Alhameed, R., Effects of particle fouling and magnetic field on porous fin for improved cooling of consumer electronics, Heat Transf. Asian Res., 1-21 (2019)
[58] Oguntala, G. A.; Sobamowo, G. M.; Eya, N. N.; Abd-Alhameed, R. A., Investigation of simultaneous effects of surface roughness, porosity, and magnetic field of rough porous microfin under a convective-radiative heat transfer for improved microprocessor cooling of consumer electronics, IEEE Trans. Comp. Pack. Manufact. Technol., 9, 2, 235-246 (2019)
[59] Deshamukhya, T.; Hazarika, S. A.; Bhanja, D.; Nath, S., An optimization study to investigate non-linearity in thermal behaviour of fin having temperature dependent internal heat generation with and without tip loss, Commun. Nonlinear Sci. Numer. Simulat., 67, 351-365 (2019) · Zbl 1508.80002
[60] Mehraban, M.; Khosravi-Nikou, M. R.; Shaahmadi, F., Thermal behaviour of convective-radiative porous fins under periodic thermal conditions, Canad. J. Chem. Eng., 97, 821-828 (2019)
[61] Kiwan, S., On the natural convection heat transfer from an inclined surface with porous fins, Transp. Porous Media, 127, 295-307 (2019)
[62] Ahmad, L.; Zahid, H.; Ahmad, F.; Raja, M. A.Z.; Baleanu, D., Design of computational intelligent procedure for thermal analysis of porous fin model, Chinese J. Phys., 59, 641-655 (2019)
[63] Khatami, S.; Rahbar, N., An analytical study of entropy generation in rectangular natural convective porous fins, Thermal Sci. Eng. Progr., 11, 142-149 (2019)
[64] Hoseinzadeh, S.; Heyns, P. S.; Chamkha, A. J.; Shirkhani, A., Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods, J. Therm Anal. Calorim., 138, 727-735 (2019)
[65] Oguntala, G.; Abd-Alhameed, R.; Ngala, M., Transient thermal analysis and optimization of convective-radiative porous fin under the influence of magnetic field for efficient microprocessor cooling, Int. J. Thermal Sci., 145, Article 106019 pp. (2019)
[66] Deshamukhya, T.; Nath, R.; Hazarika, S. A.; Bhanja, D.; Nath, S., A modified firefly algorithm to maximize heat dissipation of a rectangular porous fin in heat exchanger exposed to both convective and radiative environment, Proc. IMechE Part E J. Process Mech. Eng., 233, 6, 1203-1216 (2019)
[67] Gireesha, B. J.; Sowmya, G.; Khan, M. I.; Oztop, H. F., Flow of hybrid nanofluid across a permeable longitudinal moving fin along with thermal radiation and natural convection, Comput. Methods Programs Biomed., 185, Article 105166 pp. (2020)
[68] Mesgarpour, M.; Heydari, A.; Saedodin, Seyfolah, Comparison of free convection flow around an engineered porous fin with spherical connections and rigid fin under different positioning angles-An experimental and numerical analysis, Phys. Fluids, 31, Article 037110 pp. (2019)
[69] Brewster, M. Q., Thermal Radiation Transfer properties (1972), Wiley: Wiley New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.