×

zbMATH — the first resource for mathematics

A coupled finite element-meshfree smoothed point interpolation method for nonlinear analysis. (English) Zbl 07371610
Summary: In this paper, coupling between the finite element method (FEM) and the smoothed point interpolation methods (SPIM) is employed in the study of inelastic problems where the meshfree methods presents attractive characteristics. These studies are based on a strategy whose inelastic region is previously discretised by a SPIM method, while the rest of domain is represented by FEM. Linear and nonlinear numerical simulations are presented, and the results of simulations are compared, when possible, to analytical solutions and experimental results in order to demonstrate the main features of the proposed coupling.
MSC:
65-XX Numerical analysis
74-XX Mechanics of deformable solids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Farahani, B. V.; Pires, F. M.A.; Moreira, P. M.G. P.; Belinha, J., A meshless method in the non-local constitutive damage models, Proc Struct Integr, 1, 226-233 (2016)
[2] Farahani, B. V.; Belinha, J.; Pires, F. M.A.; Ferreira, A. J.M.; Moreira, P. M.G. P., A meshless approach to non-local damage modelling of concrete, Eng Anal Bound Elem, 79, 62-74 (2017) · Zbl 1403.74300
[3] Belinha, J.; Azevedo, J. M.C.; Dinis, L. M.J. S.; Jorge, R. M.N., Simulating fracture propagation in brittle materials using a meshless approach, Eng Comput, 34, 503-522 (2017)
[4] Belytschko, T.; Organ, D.; Krongauz, Y., A coupled finite element-element free Galerkin method, Comput Mech, 17, 186-195 (1995) · Zbl 0840.73058
[5] Méndez, S. F., Mesh-Free Methods and Finite Elements: Friend or Foe (2001), Universitat Politécnica de Catalunya
[6] Méndez, S. F.; Huerta, A., Imposing essential boundary conditions in meshfree methods, Comput Methods Appl Mech Eng, 193, 1257-1275 (2004) · Zbl 1060.74665
[7] http://www.pos.dees.ufmg.br/defesas/12D.PDF
[8] Ullah, Z.; Coombs, W. M.; Augarde, C. E., An adaptive finite element/meshless coupled method based on local maximum entropy shape functions for linear and nonlinear problems, Comput Methods Appl Mech Eng, 267, 111-132 (2013) · Zbl 1286.74111
[9] Kumar, S.; Singh, I. V.; Mishra, B. K., A coupled finite element and element-free galerkin approach for the simulation of stable crack growth in ductile materials, Theor Appl Fract Mech, 70, 49-58 (2014)
[10] Shedbale, A. S.; Singh, I. V.; Mishra, B. K., A coupled FE-EFG approach for modelling crack growth in ductile materials, Fatigue Fract Eng Mater Struct, 39, 1204-1225 (2016)
[11] Shedbale, A. S.; Singh, I. V.; Mishra, B. K.; Sharma, K., Ductile failure modeling and simulations using coupled FE-EFG approach, Int J Fract, 203, 183-1209 (2017)
[12] https://doi.org/10.1177%2F0954406216688716
[13] Zhang, Y.; Ge, W.; Zhang, Y.; Zhao, Z., Topology optimization method with direct coupled finite element-element-free Galerkin method, Adv Eng Software, 115, 217-229 (2018)
[14] Zhang, Y.; Ge, W.; Zhang, Y.; Zhao, Z.; Zhang, J., Topology optimization of hyperelastic structure based on a directly coupled finite element and element-free galerkin method, Adv Eng Software, 123, 25-37 (2018)
[15] Jameel, A.; Harmain, G. A., Fatigue crack growth analysis of cracked specimens by the coupled finite element-element free Galerkin method, J Mech Adv Mater Struct, 26, 1343-1356 (2019)
[16] Attaway, S. W.; Heinstein, M. W.; Swegle, J. W., Coupling of smooth particle hydrodynamics with the finite element method, Nucl Eng Des, 150, 199-205 (1994)
[17] De Vuyst, T.; Vignjevic, R.; Campbell, J. C., Coupling between meshless and finite element methods, Int J Impact Eng, 31, 1054-1064 (2005)
[18] Technical report
[19] Wu, Y.; Magallanes, J. M.; Choi, H. J.; Crawford, J. E., Evolutionarily coupled finite-element mesh-free formulation for modeling concrete behaviors under blast and impact loadings, J Eng Mech, 139, 4, 525-536 (2013)
[20] https://doi.org/10.1177%2F1056789514520797
[21] Liu, Z.; Lu, M.; Li, Q.; Lv, Z.; Chang, A.; Pang, K.; Zhao, S., A direct coupling method of meshless local petrov-galerkin (MLPG) and finite element method (FEM), Int J Appl Electrom Mech, 51, 1, 51-59 (2016)
[22] Zhang, Y.; Wang, J.; Zhang, B., Coupled FEM and meshless radial point interpolation method, J Tsinghua Univ (Sci Technol), 48, 6, 951-954 (2008)
[23] Yuan, H.; Peng, C.; Lin, Q.; Zhang, B., Simulation of tensile cracking in earth structures with an adaptive RPIM-FEM coupled method, KSCE J Civ Eng, 18, 7, 2007-2018 (2014)
[24] Peng, C.; Wu, W.; Zhang, B., Three-dimensional simulations of tensile cracks in geomaterials by coupling meshless and finite element method, Int J Numer Anal Methods Geomech, 39, 135-154 (2015)
[25] Liu, G. R.; Zhang, G. Y., Smoothed Point Interpolation Methods - G Space Theory and Weakened Weak Forms (2013), USA: World Scientific Publishing Co. Pte. Ltd. · Zbl 1278.65002
[26] Gori, L.; Penna, S. S.; Pitangueira, R. L.S., G-Space theory and weakened-weak form for micropolar media: application to smoothed point interpolation methods, Eng Anal Bound Elem, 101, 318-329 (2019) · Zbl 1464.74008
[27] Gori, L.; Penna, S. S.; Pitangueira, R. L.S., Smoothed point interpolation methods for the regularization of material instabilities in scalar damage models, Int J Numer Methods Eng., 117, 729-755 (2019)
[28] Liu, G. R.; Zhang, G. Y.; Dai, K. Y.; Wang, Y. Y.; Zhong, Z. H.; Li, G. Y.; Han, X., A linearly conforming point interpolation method (LC-PIM) for 2d solid mechanics problems, Int J Comput Methods, 2, 4, 645-665 (2005) · Zbl 1137.74303
[29] Liu, G. R.; Zhang, G. Y., Edge-based smoothed point interpolation methods, Int J Comput Methods, 5, 4, 621-646 (2008) · Zbl 1264.74284
[30] Liu, G. R.; Zhang, G. Y., A normed g space and weakened weak \(( \text{W}^2)\) formulation of a cell-based smoothed point interpolation method, Int J Comput Methods, 6, 1, 147-179 (2009) · Zbl 1264.74285
[31] Liu, G. R.; Gu, Y. T., A point interpolation method for two-dimensional solids, Int J Numer Methods Eng, 50, 937-951 (2001), 10.1002/1097-0207(20010210)50:4%3C937::AID-NME62%3E3.0.CO;2-X · Zbl 1050.74057
[32] Taipei, Taiwan
[33] Liu, G. R.; Gu, Y. T., A local radial point interpolation method (LRPIM) for free vibration analyses of 2-d solids, J Sound Vib, 246, 1, 29-46 (2001)
[34] Wang, J. G.; Liu, G. R., A point interpolation meshless method based on radial basis functions, Int J Numer Methods Eng, 54, 1623-1648 (2002) · Zbl 1098.74741
[35] Liu, G. R., Meshfree methods: moving beyond the finite element method (2010), CRC Press · Zbl 1205.74003
[36] Wu, S. C.; Liu, G. R.; Zhang, H. O.; Zhang, G. Y., A node-based smoothed point interpolation method (NS-PIM) for thermoelastic problems with solution bounds, Int J Heat Mass Transf, 52, 1464-1471 (2009) · Zbl 1157.80377
[37] Wu, S. C.; Liu, G. R.; Cui, X. Y.; Nguyen, T. T.; Zhang, G. Y., An edge-based smoothed point interpolation method (ES-PIM) for heat transfer analysis of rapid manufacturing system, Int J Heat Mass Transf, 53, 1938-1950 (2010) · Zbl 1190.80038
[38] Zhang, G.; Liu, G. R., A meshfree cell-based smoothed point interpolation method for solid mechanics problems, AIP Conf Proc, 1233, 887-892 (2010)
[39] Zhang, G. Y.; Liu, G. R., Meshfree cell-based smoothed point interpolation method using isoparametric PIM shape functions and condensed RPIM shape functions, Int J Comput Methods, 8, 4, 705-730 (2011) · Zbl 1245.65014
[40] Carol, I.; Rizzi, E.; Willam, K., A unified theory of elastic degradation and damage based on a loading surface, Int J Solids Struct, 31, 2835-2865 (1994) · Zbl 0943.74550
[41] http://www.pos.dees.ufmg.br/defesas/518D.PDF
[42] Gori, L.; Penna, S. S.; Pitangueira, R. L.S., A computational framework for constitutive modelling, Comput Struct, 187, 1-23 (2017)
[43] Mazars, J., Application de le Mécanique de l’endommagement au comportement non lineaire et à la rupture du béton de Structure (1984), Université Pierre et Marie Curie - Laboratoire de Mécanique et Technologie: Université Pierre et Marie Curie - Laboratoire de Mécanique et Technologie Paris, France (in french)
[44] de Borst, R., Gutiérrez MA. a unified framework for concrete damage and fracture models including size effects, Int J Fract, 95, 261-277 (1999)
[45] Timoshenko, S. P.; Goodiew, J. N., Theory of elasticity. 3rd ed (1970), McGraw-Hill: McGraw-Hill New York · Zbl 0266.73008
[46] Winkler, B.; Hofstetter, G.; Lehar, H., Application of a constitutive model for concrete to the analysis of a precast segmental tunnel lining, Int J Numer Anal Methods Geomech, 28, 797-819 (2014) · Zbl 1112.74547
[47] Petersson, P. E., Crack growth and development of fracture zones in plain concrete and similar materials, TVBM-1006, Division of Building Materials (1981), Lund Institute of Technology: Lund Institute of Technology Lund (Sweden)
[48] Gori, L.; Penna, S. S.; Pitangueira, R. L.S., Smoothed point interpolation methods for the regularization of material instabilities in scalar damage models, Int J Numer Methods Eng, 117, 729-755 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.