×

zbMATH — the first resource for mathematics

CAPD::DynSys: a flexible C++ toolbox for rigorous numerical analysis of dynamical systems. (English) Zbl 07370435
Summary: We present the CAPD::DynSys library for rigorous numerical analysis of dynamical systems. The basic interface is described together with several interesting case studies illustrating how it can be used for computer-assisted proofs in dynamics of ODEs.
MSC:
37-04 Software, source code, etc. for problems pertaining to dynamical systems and ergodic theory
65G20 Algorithms with automatic result verification
37C27 Periodic orbits of vector fields and flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nedialkov, N. S., VNODE-LP: A validated solver for initial value problems in ordinary differential equations, Tech. Rep. CAS-06-06-NN (2006)
[2] Kashiwagi M.. kv -a c++ library for verified numerical computation. 2019. http://verifiedby.me/kv/.
[3] Rauh, A.; Brill, M.; Günther, C., A novel interval arithmetic approach for solving differential-algebraic equations with ValEncIA-IVP, Int J Appl Math Comput Sci, 19, 3, 381-397 (2009) · Zbl 1300.93075
[4] Bresolin, D.; Collins, P.; Geretti, L.; Segala, R.; Villa, T.; Zivanovic, S., A computable and compositional semantics for hybrid automata, 7th International wireless communications and mobile computing conference (IWCMC) (2020) · Zbl 07300859
[5] Berz, M.; Makino, K., New methods for high-dimensional verified quadrature, Reliable Comput, 5, 1, 13-22 (1999) · Zbl 0947.65026
[6] CAPD. Computer assisted proofs in dynamics, a package for rigorous numerics. http://capdiiujedupl2013;.
[7] Kapela, T.; Zgliczyński, P., The existence of simple choreographies for the N-body problem – a computer-assisted proof, Nonlinearity, 16, 6, 1899 (2003) · Zbl 1060.70023
[8] Kapela, T.; Simó, C., Computer assisted proofs for nonsymmetric planar choreographies and for stability of the eight, Nonlinearity, 20, 5, 1241 (2007) · Zbl 1115.70008
[9] Wilczak, D.; Barrio, R., Systematic computer-assisted proof of branches of stable elliptic periodic orbits and surrounding invariant tori, SIAM J Appl Dyn Syst, 16, 3, 1618-1649 (2017) · Zbl 1376.65149
[10] Mischaikow, K.; Mrozek, M., Chaos in the Lorenz equations: a computer-assisted proof, Bull Amer Math Soc (NS), 32, 1, 66-72 (1995) · Zbl 0820.58042
[11] Mischaikow, K.; Mrozek, M., Chaos in the Lorenz equations: a computer-assisted proof. Part II: details, Math Comput, 67, 1023-1046 (1998) · Zbl 0913.58038
[12] Mischaikow, K.; Mrozek, M.; Szymczak, A., Chaos in the Lorenz equations: a computer-assisted proof. Part III: the classical parameter values, J Differ Eqs, 169, 17-56 (2001) · Zbl 0979.37015
[13] ISBN 978-3-662-44199-2 · Zbl 1402.57021
[14] Zgliczyński, P., Computer assisted proof of chaos in the Rössler equations and in the Hénon map, Nonlinearity, 10, 1, 243-252 (1997) · Zbl 0907.58048
[15] Żelawski, M., Rigorous numerical approach to isolation in dynamical systems on the example of the Kuramoto-Sivashinsky equation, Reliable Comput, 5, 2, 113-129 (1999) · Zbl 0942.65145
[16] Pilarczyk, P., Computer assisted method for proving existence of periodic orbits, Topol Methods Nonlinear Anal, 13, 2, 365-377 (1999) · Zbl 0953.34029
[17] Lohner, R. J., Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value problems, Computational ordinary differential equations (London, 1989). Computational ordinary differential equations (London, 1989), Inst. Math. Appl. Conf. Ser. New Ser., vol. 39, 425-435 (1992), Oxford Univ. Press: Oxford Univ. Press New York · Zbl 0767.65069
[18] Zgliczyński, P., \(C{}^1\)-Lohner algorithm, Foundations Comput Math, 2, 4, 429-465 (2002) · Zbl 1049.65038
[19] Rössler, O. E., An equation for continuous chaos, Phys Lett A, 57, 5, 397-398 (1976) · Zbl 1371.37062
[20] Rossler, O., An equation for hyperchaos, Phys Lett A, 71, 2-3, 155-157 (1979) · Zbl 0996.37502
[21] Lorenz, E., Deterministic nonperiodic flow, J Atmos Sci, 20, 130-141 (1963) · Zbl 1417.37129
[22] Michelson, D., Steady solutions of the Kuramoto-Sivashinsky equation, Physica D, 19, 1, 89-111 (1986) · Zbl 0603.35080
[23] Rall, L. B.; Corliss, G. F., An introduction to automatic differentiation, Computational differentiation (Santa Fe, NM, 1996), 1-18 (1996), SIAM, Philadelphia, PA · Zbl 0940.65019
[24] Wilczak, D.; Zgliczyński, P., \(C{}^r\)-Lohner algorithm, Schedae Informaticae, 20, 9-46 (2011)
[25] Kapela, T.; Zgliczyński, P., A Lohner-type algorithm for control systems and ordinary differential inclusions, Discrete Contin Dyn Syst - B, 11, 365-385 (2009) · Zbl 1185.65079
[26] Arioli, G.; Zgliczyński, P., Symbolic dynamics for the Hénon-Heiles hamiltonian on the critical energy level, J Diff Eq, 171, 173-202 (2001) · Zbl 1018.37006
[27] Wilczak, D., Chaos in the Kuramoto-Sivashinsky equations-a computer-assisted proof, J Differ Eqs, 194, 2, 433-459 (2003) · Zbl 1050.37017
[28] Wilczak, D.; Zgliczyński, P., Heteroclinic connections between periodic orbits in planar restricted circular three-body problem – a computer assisted proof, Comm Math Phys, 234, 1, 37-75 (2003) · Zbl 1055.70005
[29] Wilczak, D.; Zgliczyński, P., Heteroclinic connections between periodic orbits in planar restricted circular three body problem. Part II, Comm Math Phys, 259, 561-576 (2005) · Zbl 1133.70005
[30] Wilczak, D., The existence of Shilnikov homoclinic orbits in the Michelson system: a computer assisted proof, Foundations Comput Math, 6, 4, 495-535 (2006) · Zbl 1130.37415
[31] Wilczak, D., Uniformly hyperbolic attractor of the Smale-Williams type for a Poincarḿap in the Kuznetsov system, SIAM J Appl Dyn Syst, 9, 4, 1263-1283 (2010) · Zbl 1213.37046
[32] Capiński, M. J., Computer assisted existence proofs of Lyapunov orbits at L2 and transversal intersections of invariant manifolds in the Jupiter-Sun PCR3BP, SIAM J Appl Dyn Syst, 11, 4, 1723-1753 (2012) · Zbl 1264.37008
[33] Capiński, M. J.; Wasieczko-Zaja̧c, A., Geometric proof of strong stable/unstable manifolds with application to the restricted three body problem, Top Meth Non Anal, 46, 1, 363-399 (2015) · Zbl 1365.34079
[34] Galante, J.; Kaloshin, V., Destruction of invariant curves in the restricted circular planar three body problem using comparison of action, Duke Math J, 159, 2, 275-327 (2011) · Zbl 1269.70016
[35] Galias, Z.; Tucker, W., Rigorous integration of smooth vector fields around spiral saddles with an application to the cubic Chua’s attractor, J Differ Eqs, 266, 5, 2408-2434 (2019) · Zbl 1417.34068
[36] Galias, Z.; Tucker, W., Rigorous study of short periodic orbits for the Lorenz system, Circuits and systems, 2008. ISCAS 2008. IEEE International symposium on, 764-767 (2008)
[37] Galias, Z.; Tucker, W., Validated study of the existence of short cycles for chaotic systems using symbolic dynamics and interval tools, Int J Bifurcation Chaos, 21, 2, 551-563 (2011) · Zbl 1210.34044
[38] Fenucci, M.; Gronchi, G. F., On the stability of periodic n-body motions with the symmetry of platonic polyhedra, Nonlinearity, 31, 11, 4935-4954 (2018) · Zbl 1433.70021
[39] Miyaji, T.; Okamoto, H., A computer-assisted proof of existence of a periodic solution, Proc Japan Acad Ser A Math Sci, 90, 10, 139-144 (2014) · Zbl 1348.37037
[40] https://doi.org/10.1007/s13160-018-00339-x · Zbl 1410.76332
[41] Matsue K.Rigorous numerics of finite-time singularities in dynamical systems - methodology and applications. prepint 2019.
[42] http://www.sciencedirect.com/science/article/pii/S0005109818301699 · Zbl 1400.93294
[43] http://www.sciencedirect.com/science/article/pii/S0921889016304006
[44] Cyranka, J.; Islam, M. A.; Byrne, G.; Jones, P.; Smolka, S. A.; Grosu, R., Lagrangian reachabililty, International conference on computer aided verification, 379-400 (2017), Springer
[45] Cyranka, J.; Wanner, T., Computer-assisted proof of heteroclinic connections in the one-dimensional Ohta-Kawasaki model, SIAM J Appl Dyn Syst, 17, 1, 694-731 (2018) · Zbl 1415.35057
[46] Capiński M.J., Fleurantin E., James J.D.M.. Computer assisted proofs of two-dimensional attracting invariant tori for ODEs. 2020. http://aimsciences.org//article/id/f12d5be6-be46-451d-bbfa-dec2cf19bf48. 10.3934/dcds.2020162 · Zbl 1459.37079
[47] Kokubu, H.; Wilczak, D.; Zgliczyński, P., Rigorous verification of cocoon bifurcations in the Michelson system, Nonlinearity, 20, 9, 2147-2174 (2007) · Zbl 1126.37035
[48] Wilczak, D.; Zgliczyński, P., Period doubling in the Rössler system – a computer assisted proof, Foundations Comput Math, 9, 5, 611-649 (2009) · Zbl 1177.37083
[49] http://www.sciencedirect.com/science/article/pii/S1007570419300735 · Zbl 1464.65282
[50] Wilczak, D.; Zgliczyński, P., Computer assisted proof of the existence of homoclinic tangency for the Hénon map and for the forced damped pendulum, SIAM J Appl Dyn Syst, 8, 4, 1632-1663 (2009) · Zbl 1187.37115
[51] Capiński M.J., Gidea M.. Arnold diffusion, quantitative estimates and stochastic behavior in the three-body problem. preprint. · Zbl 1359.37121
[52] Kapela, T.; Simó, C., Rigorous KAM results around arbitrary periodic orbits for hamiltonian systems, Nonlinearity, 30, 3, 965-986 (2017) · Zbl 1412.70024
[53] Wilczak, D.; Barrio, R., Distribution of stable islands within chaotic areas in the non-hyperbolic and hyperbolic regimes in the Hénon-Heiles system, Nonlinear Dyn (2020)
[54] Capiński, M. J.; Roldán, P., Existence of a center manifold in a practical domain around \(L_1\) in the restricted three-body problem, SIAM J Appl Dyn Syst, 11, 1, 285-318 (2012) · Zbl 1235.37028
[55] Capiński, M. J.; Zgliczyński, P., Beyond the Melnikov method: a computer assisted approach, J Differ Eqs, 262, 1, 365-417 (2017) · Zbl 1368.37035
[56] http://www.sciencedirect.com/science/article/pii/S0022039618303097 · Zbl 1400.37031
[57] Moore, R. E., Interval analysis (1966), Prentice-Hall, Inc.: Prentice-Hall, Inc. Englewood Cliffs, N.J. · Zbl 0176.13301
[58] Tucker, W., Validated numerics: a short introduction to rigorous computations (2011), Princeton University Press · Zbl 1231.65077
[59] Fousse, L.; Hanrot, G.; Lefèvre, V.; Pélissier, P.; Zimmermann, P., MPFR: A multiple-precision binary floating-point library with correct rounding, ACM Trans Math Softw, 33, 2, 13es (2007) · Zbl 1365.65302
[60] Mrozek, M.; Zgliczyński, P., Set arithmetic and the enclosing problem in dynamics, Ann Polon Math, 74, 237-259 (2000) · Zbl 0967.65113
[61] http://www.sciencedirect.com/science/article/pii/S0168927416300435 · Zbl 1382.65199
[62] Nedialkov, N. S.; Jackson, K. R., An interval Hermite-Obreschkoff method for computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation, Dev Reliable Comput, 5, 289-310 (1998) · Zbl 1130.65312
[63] Walawska, I.; Wilczak, D., An implicit algorithm for validated enclosures of the solutions to variational equations for ODEs, Appl Math Comput, 291, 303-322 (2016) · Zbl 1410.65259
[64] Galias, Z.; Zgliczyński, P., Computer assisted proof of chaos in the Lorenz equations, Phys D, 115, 3-4, 165-188 (1998) · Zbl 0941.37018
[65] Troy, W. C., The existence of steady solutions of the Kuramoto-Sivashinsky equation, J Differ Eqs, 82, 2, 269-313 (1989) · Zbl 0693.34053
[66] Barrio, R.; Rodríguez, M.; Blesa, F., Computer-assisted proof of skeletons of periodic orbits, Comput Phys Commun, 183, 1, 80-85 (2012)
[67] Wilczak, D., Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system, Discrete Contin Dyn Syst Ser B, 11, 4, 1039-1055 (2009) · Zbl 1172.34032
[68] Nakao, M. T., A numerical verification method for the existence of weak solutions for nonlinear boundary value problems, J Math Anal Appl, 164, 2, 489-507 (1992) · Zbl 0771.65046
[69] ISBN 0-521-33196-X · Zbl 0706.15009
[70] Siegel, C. L.; Moser, J. K., Lectures on celestial mechanics (1971), Springer-Verlag · Zbl 0312.70017
[71] http://www.sciencedirect.com/science/article/pii/S002203962030334X · Zbl 1439.35218
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.