×

Stability and optimal decay for a system of 3D anisotropic Boussinesq equations. (English) Zbl 1473.35459

MSC:

35Q35 PDEs in connection with fluid mechanics
35B35 Stability in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76R10 Free convection
35B20 Perturbations in context of PDEs
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ben Said, O.; Pandey, U.; Wu, J., The stabilizing effect of the temperature on buoyancy-driven fluids, Indiana Univ. Math. J. (2020)
[2] Bianchini, R.; Coti Zelati, M.; Dolce, M., Linear inviscid damping for shear flows near Couette in the 2D stably stratified regime (2020)
[3] Bourlioux, A.; Majda, A. J., Elementary models with probability distribution function intermittency for passive scalars with a mean gradient, Phys. Fluids, 14, 881-897 (2002) · Zbl 1184.76067
[4] Cao, C.; Wu, J., Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226, 1803-1822 (2011) · Zbl 1213.35159
[5] Castro, Á.; Córdoba, D.; Lear, D., On the asymptotic stability of stratified solutions for the 2D Boussinesq equations with a velocity damping term, Math. Models Methods Appl. Sci., 29, 1227-1277 (2019) · Zbl 1425.35149
[6] Constantin, P.; Doering, C. R., Heat transfer in convective turbulence, Nonlinearity, 9, 1049-1060 (1996) · Zbl 0899.35078
[7] Deng, W.; Wu, J.; Zhang, P., Stability of Couette flow for 2D Boussinesq system with vertical dissipation (2020)
[8] Doering, C.; Gibbon, J., Applied Analysis of the Navier-Stokes equations (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0838.76016
[9] Doering, C. R.; Wu, J.; Zhao, K.; Zheng, X., Long time behavior of the two-dimensional Boussinesq equations without buoyancy diffusion, Physica D, 376-377, 144-159 (2018) · Zbl 1398.35164
[10] Embid, P. F.; Majda, A. J., Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers, Geophys. Astrophys. Fluid Dyn., 87, 1-50 (1998)
[11] Lai, S.; Wu, J.; Zhong, Y., Stability and large-time behavior of the 2D Boussinesq equations with partial dissipation, J. Differ. Equ., 271, 764-796 (2021) · Zbl 1454.35288
[12] Majda, A., Introduction to PDEs and Waves for the Atmosphere and Ocean (2003), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1278.76004
[13] Majda, A.; Bertozzi, A., Vorticity and Incompressible Flow (2002), Cambridge: Cambridge University Press, Cambridge
[14] Markowski, P.; Richardson, Y., Mesoscale Meteorology in Midlatitudes (2010), New York: Wiley, New York
[15] Pedlosky, J., Geophysical Fluid Dynamics (1987), New York: Springer, New York · Zbl 0713.76005
[16] Schonbek, M. E., L2 decay for weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 88, 209-222 (1985) · Zbl 0602.76031
[17] Schonbek, M.; Schonbek, T.; Schonbek, T., Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows, Discrete Contin. Dyn. Syst., 13, 1277-1304 (2005) · Zbl 1091.35070
[18] Schonbek, M. E.; Wiegner, M., On the decay of higher-order norms of the solutions of Navier-Stokes equations, Proc. R. Soc. Edinburgh A, 126, 677-685 (1996) · Zbl 0862.35086
[19] Simon, G.; Nadiga, B. T., Instability of a periodic flow in geostrophic and hydrostatic balance, Comput. Fluids, 115, 173-191 (2015) · Zbl 1390.76087
[20] Tao, L.; Wu, J., The 2D Boussinesq equations with vertical dissipation and linear stability of shear flows, J. Differ. Equ., 267, 1731-1747 (2019) · Zbl 1416.35218
[21] Tao, L.; Wu, J.; Zhao, K.; Zheng, X., Stability near hydrostatic equilibrium to the 2D Boussinesq equations without thermal diffusion, Arch. Ration. Mech Anal., 237, 585-630 (2020) · Zbl 1437.35549
[22] Tao, T., Nonlinear Dispersive Equations: Local and Global Analysis (2006), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1106.35001
[23] Wan, R., Global well-posedness for the 2D Boussinesq equations with a velocity damping term (2018)
[24] Wen, B.; Dianati, N.; Lunasin, E.; Chini, G. P.; Doering, C. R., New upper bounds and reduced dynamical modeling for Rayleigh-Bénard convection in a fluid saturated porous layer, Commun. Nonlinear Sci. Numer. Simul., 17, 2191-2199 (2012)
[25] Wu, J.; Xu, X.; Zhu, N., Stability and decay rates for a variant of the 2D Boussinesq-Bénard system, Commun. Math. Sci., 17, 2325-2352 (2019) · Zbl 1434.35128
[26] Wu, J.; Zhu, Y., Global solutions of 3D incompressible MHD system with mixed partial dissipation and magnetic diffusion near an equilibrium, Adv. Math., 377 (2021) · Zbl 1455.35207
[27] Yang, J.; Lin, Z., Linear inviscid damping for Couette flow in stratified fluid, J. Math. Fluid Mech., 20, 445-472 (2018) · Zbl 1460.76298
[28] Zillenger, C., On enhanced dissipation for the Boussinesq equations (2020)
[29] Zillenger, C., On the Boussinesq equations with non-monotone temperature profiles (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.