×

zbMATH — the first resource for mathematics

On Neumann problem for equation with fractional derivatives with different starting points. (Russian. English summary) Zbl 1407.35208
Summary: In the paper, we investigate solvability of the Neumann problem for an equation with fractional derivatives with different starting points. An estimate for the first nonzero eigenvalue is found.

MSC:
35R11 Fractional partial differential equations
PDF BibTeX XML Cite
Full Text: DOI MNR
References:
[1] Nahushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.
[2] Rekhviashvili S.SH., “Formalizm Lagranzha s drobnoj proizvodnoj v zadachah mekhaniki”, Pis’ma v ZHTF, 30:2 (2004), 33–37
[3] Rekhviashvili S.SH., “K opredeleniyu fizicheskogo smysla drobnogo integro-differencirovaniya”, Nelinejnyj mir, 5:4 (2007), 194–197
[4] Eneeva L.M., “Kraevaya zadacha dlya differencial’nogo uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Vestnik KRAUNC. Fiz.-mat. nauki, 3:2(11) (2015), 39–44
[5] Eneeva L.M., “Ocenka pervogo sobstvennogo znacheniya zadachi Dirihle dlya obyknovennogo differencial’nogo uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Izvestiya KBNC RAN, 2017, no. 1(75) · Zbl 1384.92031
[6] Stanković B., “An equation with left and right fractional derivatives”, Publications de l’institut mathématique. Nouvelle série,, 80(94) (2006), 259–272 · Zbl 1246.26008
[7] Atanackovic T. M., Stankovic B., “On a differential equation with left and right fractional derivatives”, Fractional Calculus and Applied Analysis, 10:2 (2007), 139–150 · Zbl 1136.26301
[8] Torres C., “Existence of a solution for the fractional forced pendulum”, Journal of Applied Mathematics and Computational Mechanics, 13:1 (2014), 125–142
[9] Tokmagambetov N., Torebek B.T., “Fractional Analogue of Sturm-Liouville Operator”, Documenta Mathematica, 21 (2016), 1503–1514 · Zbl 1359.26010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.