×

A Schrödinger-type algorithm for solving the Schrödinger equations via Phragmén-Lindelöf inequalities. (English) Zbl 1499.65452

Summary: In this article, we consider the numerical method for solving the Schrödinger equations via Phragmén-Lindelöf inequalities under the order induced by a symmetric cone with the function involved being monotone. Based on the Phragmén-Lindelöf inequalities, the underlying system of inequalities is reformulated as a system of smooth equations, and a Schrödinger-type method is proposed to solve it iteratively so that a solution of the system of the Schrödinger equations is found. By means of the Schrödinger type inequalities, the algorithm is proved to be well defined and to be globally convergent under weak assumptions and locally quadratically convergent under suitable assumptions. Preliminary numerical results indicate that the algorithm is effective.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65K05 Numerical mathematical programming methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear Schrödinger equations. SIAM J. Sci. Comput. 33, 1008-1033 (2012) · Zbl 1231.35223 · doi:10.1137/090780535
[2] Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1995) · Zbl 0935.90037
[3] Borzi, A., Decker, E.: Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation. J. Comput. Appl. Math. 193, 65-88 (2006) · Zbl 1118.65107 · doi:10.1016/j.cam.2005.04.066
[4] Bratsos, A.G.: A modified numerical scheme for the cubic Schrödinger equation. Numer. Methods Partial Differ. Equ. 27, 608-620 (2011) · Zbl 1216.65101 · doi:10.1002/num.20541
[5] Gomez-Ruggiero, M., Martinez, J.M., Moretti, A.: Comparing algorithms for solving sparse nonlinear systems of equations. SIAM J. Sci. Stat. Comput. 23, 459-483 (1992) · Zbl 0752.65039 · doi:10.1137/0913025
[6] Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (2003)
[7] He, J., Zhang, X., Liu, L., Wu, Y., Cui, Y.: Existence and asymptotic analysis of positive solutions for a singular fractional differential equation with nonlocal boundary conditions. Bound. Value Probl. 2018, Article ID 189 (2018) · Zbl 1499.34052 · doi:10.1186/s13661-018-1109-5
[8] Huang, J., Tao, X.: Weighted estimates on the Neumann problem for Schrödinger equations in Lipschitz domains. Acta Math. Sci. Ser. A 36(06), 1165-1185 (2016) · Zbl 1374.35378
[9] Kermack, W.O., M’Kendrick, A.D.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 115, 700-721 (1997) · JFM 53.0517.01 · doi:10.1098/rspa.1927.0118
[10] Ladde, G.S., Lakshmikatham, V.: Random Differential Inequalities. Academic Press, New York (1980) · Zbl 0466.60002
[11] Li, Y., Sun, Y., Meng, F., Tian, Y.: Exponential stabilization of switched time-varying systems with delays and disturbances. Appl. Math. Comput. 324, 131-140 (2018) · Zbl 1426.34101
[12] Liu, Z.: Existence results for the general Schrödinger equations with a superlinear Neumann boundary value problem. Bound. Value Probl. 2019, Article ID 61 (2019) · Zbl 1524.35252 · doi:10.1186/s13661-019-1174-4
[13] Lu, Y., Kou, L., Sun, J., Zhao, G., Wang, W., Han, Q.: New applications of Schrödinger type inequalities in the Schrödingerean Hardy space. J. Inequal. Appl. 2017, Article ID 306 (2017) · Zbl 1381.42033 · doi:10.1186/s13660-017-1577-7
[14] Ma, W.X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264(4), 2633-2659 (2018) · Zbl 1387.35532 · doi:10.1016/j.jde.2017.10.033
[15] Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999) · Zbl 0930.65067 · doi:10.1007/b98874
[16] Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970) · Zbl 0241.65046
[17] Qian, X., Chen, Y., Song, S.: Novel conservative methods for Schrödinger equations with variable coefficients over long time. Commun. Comput. Phys. 15(3), 692-711 (2014) · Zbl 1388.65125 · doi:10.4208/cicp.120313.020813a
[18] Qiao, B., Ruda, H.: Generalized Schrödinger equation and quantum measurement. Phys. A 355(2-4), 333-345 (2005) · doi:10.1016/j.physa.2005.03.028
[19] Qiao, L., Tang, S., Zhao, H.: Single peak soliton and periodic cusp wave of the generalized Schrödinger-Boussinesq equations. Commun. Theor. Phys. 63(6), 731-742 (2016) · Zbl 1319.35241 · doi:10.1088/0253-6102/63/6/731
[20] Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7, 26-33 (1997) · Zbl 0898.90119 · doi:10.1137/S1052623494266365
[21] Reichel, B., Leble, S.: On convergence and stability of a numerical scheme of coupled nonlinear Schrödinger equations. Comput. Math. Appl. 55, 745-759 (2008) · Zbl 1142.65074 · doi:10.1016/j.camwa.2007.04.038
[22] Taniguchi, T.: Almost sure exponential stability for stochastic partial functional differential equations. Stoch. Anal. Appl. 16(5), 965-975 (1998) · Zbl 0911.60054 · doi:10.1080/07362999808809573
[23] Wan, L.: Some remarks on Phragmén-Lindelöf theorems for weak solutions of the stationary Schrödinger operator. Bound. Value Probl. 2015, Article ID 239 (2015) · Zbl 1330.35055 · doi:10.1186/s13661-015-0508-0
[24] Wang, Y., Liu, Y., Cui, Y.: Infinitely many solutions for impulsive fractional boundary value problem with p-Laplacian. Bound. Value Probl. 2018, Article ID 94 (2018) · Zbl 1499.34162 · doi:10.1186/s13661-018-1012-0
[25] Wang, Y.J., Xiu, N.H.: Theory and Algorithm for Nonlinear Programming. Shanxi Science and Technology Press, Xian (2004)
[26] Yan, Z., Park, J., Zhang, W.: A unified framework for asymptotic and transient behavior of linear stochastic systems. Appl. Math. Comput. 325, 31-40 (2018) · Zbl 1428.93125
[27] Yuan, Y.: Trust region algorithm for nonlinear equations. Information 1, 7-21 (1998) · Zbl 1006.65048
[28] Zouraris, G.E.: On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation. Modél. Math. Anal. Numér. 35, 389-405 (2001) · Zbl 0991.65088 · doi:10.1051/m2an:2001121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.