×

Approximate controllability for degenerate heat equation with bilinear control. (English) Zbl 1460.93016

Summary: This paper investigates the nonnegative approximate controllability for the one-dimensional degenerate heat equation governed by bilinear control. Both non-controllability and approximate controllability are studied for the system. If the control is restricted to act on a fixed domain, it is not controllable. If the control is allowed to mobile, it is approximately controllable.

MSC:

93B05 Controllability
93C20 Control/observation systems governed by partial differential equations
35K05 Heat equation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fu, X.; Yong, J.; Zhang, X., Controllability and observability of a heat equation with hyperbolic memory kernel, J. Differential Equations, 247, 8, 2395-2439 (2009) · Zbl 1187.35265 · doi:10.1016/j.jde.2009.07.026
[2] Zhang, X., Unique continuation for stochastic parabolic equations, Differential Integral Equations, 21, 1-2, 81-93 (2008) · Zbl 1224.60163
[3] Zhang, X., Carleman and observability estimates for stochastic wave equations, SIAM J. Math. Anal., 40, 2, 851-868 (2008) · Zbl 1159.60335 · doi:10.1137/070685786
[4] Zhu, Q.; Wang, H., Output feedback stabilization of stochastic feedforward systems with unknown control coefficients and unknown output function, Automatica, 87, 166-175 (2018) · Zbl 1378.93141 · doi:10.1016/j.automatica.2017.10.004
[5] Wang, B.; Zhu, Q., Stability analysis of semi-Markov switched stochastic systems, Automatica, 94, 72-80 (2018) · Zbl 1400.93325 · doi:10.1016/j.automatica.2018.04.016
[6] Wang, H.; Zhu, Q., Adaptive output feedback control of stochastic nonholonomic systems with nonlinear parameterization, Automatica, 98, 247-255 (2018) · Zbl 1406.93269 · doi:10.1016/j.automatica.2018.09.026
[7] Zhang, M.; Zhu, Q., New criteria of input-to-state stability for nonlinear switched stochastic delayed systems with asynchronous switching, Syst. Control Lett., 129, 43-50 (2019) · Zbl 1425.93245 · doi:10.1016/j.sysconle.2019.05.004
[8] Zhu, Q., Stability analysis of stochastic delay differential equations with Lévy noise, Syst. Control Lett., 118, 62-68 (2018) · Zbl 1402.93260 · doi:10.1016/j.sysconle.2018.05.015
[9] Ball, J. M.; Marsden, J. E.; Slemrod, M., Controllability for distributed bilinear systems, SIAM J. Control Optim., 20, 4, 575-597 (1982) · Zbl 0485.93015 · doi:10.1137/0320042
[10] Kime, K., Simultaneous control of a rod equation and a simple Schrödinger equation, Syst. Control Lett., 24, 4, 301-306 (1995) · Zbl 0877.93003 · doi:10.1016/0167-6911(94)00022-N
[11] Khapalov, A. Y., Global non-negative controllability of the semilinear parabolic equation governed by bilinear control, ESAIM Control Optim. Calc. Var., 7, 269-283 (2002) · Zbl 1024.93026 · doi:10.1051/cocv:2002011
[12] Khapalov, A. Y., Controllability of the semilinear parabolic equation governed by a multiplicative control in the reaction term: A qualitative approach, SIAM J. Control Optim., 41, 6, 1886-1900 (2003) · Zbl 1041.93026 · doi:10.1137/S0363012901394607
[13] Cannarsa, P.; Floridia, G.; Khapalov, A. Y., Multiplicative controllability for semilinear reaction-diffusion equations with finitely many changes of sign, Journal de Mathématiques Pures et Appliquées, 108, 4, 425-458 (2017) · Zbl 1370.93140 · doi:10.1016/j.matpur.2017.07.002
[14] Cannarsa, P.; Khapalov, A. Y., Multiplicative controllability for reaction-diffusion equations with target states admitting finitely many changes of sign, Discrete Contin. Dyn. Syst. Ser. B, 14, 4, 1293-1311 (2010) · Zbl 1219.93010
[15] Lei, P.; Gao, H., Null controllability of semilinear parabolic equations via the bilinear control, Appl. Math. Lett., 23, 1, 53-57 (2010) · Zbl 1179.35169 · doi:10.1016/j.aml.2009.07.025
[16] Lin, P.; Lei, P.; Gao, H., Bilinear control system with the reaction-diffusion term satisfying Newton’s law, Z. angew. Math. Mech., 87, 1, 14-23 (2007) · Zbl 1110.35026 · doi:10.1002/zamm.200510292
[17] Lin, P.; Zhou, Z.; Gao, H., Exact controllability of the parabolic system with bilinear control, Appl. Math. Lett., 19, 6, 568-575 (2006) · Zbl 1133.93308 · doi:10.1016/j.aml.2005.05.016
[18] Ouzahra, M.; Tsouli, A.; Boutoulout, A., Exact controllability of the heat equation with bilinear control, Mathematical Methods in the Applied Sciences, 38, 18, 5074-5084 (2015) · Zbl 1334.35072 · doi:10.1002/mma.3428
[19] Ouzahra, M., Approximate and exact controllability of a reaction-diffusion equation governed by bilinear control, European Journal of Control, 32, 32-38 (2016) · Zbl 1355.93040 · doi:10.1016/j.ejcon.2016.05.004
[20] Alabau-Boussouira, F.; Cannarsa, P.; Fragnelli, G., Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., 6, 2, 161-204 (2006) · Zbl 1103.35052 · doi:10.1007/s00028-006-0222-6
[21] Cannarsa, P.; Martinez, P.; Vancostenoble, J., Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., 47, 1, 1-19 (2008) · Zbl 1168.35025 · doi:10.1137/04062062X
[22] Cannarsa, P.; Martinez, P.; Vancostenoble, J., Persistent regional null controllability for a class of degenerate parabolic equations, Communications on Pure and Applied Analysis, 3, 4, 607-635 (2004) · Zbl 1063.35092 · doi:10.3934/cpaa.2004.3.607
[23] Gueye, M., Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., 52, 4, 2037-2054 (2014) · Zbl 1327.35211 · doi:10.1137/120901374
[24] Wang, C., Approximate controllability of a class of semilinear systems with boundary degeneracy, J. Evol. Equ., 10, 1, 163-193 (2010) · Zbl 1239.93014 · doi:10.1007/s00028-009-0044-4
[25] Wang, C., Approximate controllability of a class of degenerate systems, Applied Mathematics and Computation, 203, 1, 447-456 (2008) · Zbl 1152.93007 · doi:10.1016/j.amc.2008.04.056
[26] Lin, P.; Gao, H.; Liu, X., Some results on a nonlinear degenerate parabolic system by bilinear control, J. Math. Anal. Appl., 326, 2, 1149-1160 (2007) · Zbl 1108.93018 · doi:10.1016/j.jmaa.2006.03.079
[27] Cannarsa, P.; Floridia, G., Approximate multiplicative controllability for degenerate parabolic problems with Robin boundary conditions, Commun. Appl. Ind. Math., 2, 2, 1-16 (2011) · Zbl 1329.93029
[28] Floridia, G., Approximate controllability for nonlinear degenerate parabolic problems with bilinear control, J. Differential Equations, 257, 9, 3382-3422 (2014) · Zbl 1294.93022 · doi:10.1016/j.jde.2014.06.016
[29] Fernández, L. A.; Khapalov, A. Y., Controllability properties for the one-dimensional heat equation under multiplicative or nonnegative additive controls with local mobile support, ESAIM Control Optim. Calc. Var., 18, 4, 1207-1224 (2012) · Zbl 1262.35119 · doi:10.1051/cocv/2012004
[30] Campiti, M.; Metafune, G.; Pallara, D., Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, 57, 1, 1-36 (1998) · Zbl 0915.47029 · doi:10.1007/PL00005959
[31] Ladyžhenskaya, O. A.; Solonnikov, V. A.; Ural’ceva, N. N., Linear and quasilinear equations of parabolic type, Transl. Math. Mono. (1968), Providence R.I.: AMS, Providence R.I. · Zbl 0174.15403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.