×

Complex Gaussian multiplicative chaos. (English) Zbl 1322.60065

Authors’ abstract: In this article, we study complex Gaussian multiplicative chaos. More precisely, we study the renormalization theory and the limit of the exponential of a complex log-correlated Gaussian field in all dimensions (including Gaussian free fields in dimension 2). Our main working assumption is that the real part and the imaginary part are independent. We also discuss applications in 2D string theory; in particular, we give a rigorous mathematical definition of the so-called tachyon fields, the conformally invariant operators in critical Liouville quantum gravity with a \({c=1}\) central charge, and derive the original KPZ formula for these fields.

MSC:

60G60 Random fields
60G15 Gaussian processes
60G57 Random measures
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Allez R., Rhodes R., Vargas V.: Lognormal ⋆-scale invariant random measures. Probab. Theory Relat. Fields 155(3-4), 751-788 (2013) · Zbl 1278.60083 · doi:10.1007/s00440-012-0412-9
[2] Bacry E., Muzy J.F.: Log-infinitely divisible multifractal process. Commun. Math. Phys. 236, 449-475 (2003) · Zbl 1032.60046 · doi:10.1007/s00220-003-0827-3
[3] Barral J., Mandelbrot B.B.: Multifractal products of cylindrical pulses. Probab. Theory Relat. Fields 124, 409-430 (2002) · Zbl 1014.60042 · doi:10.1007/s004400200220
[4] Barral J., Jin X., Mandelbrot B.: Convergence of complex multiplicative cascades. Ann. Appl. Probab. 20(4), 1219-1252 (2010) · Zbl 1221.60028 · doi:10.1214/09-AAP665
[5] Barral J., Jin X., Mandelbrot B.: Uniform convergence for complex [0, 1]-martingales. Ann. Appl. Probab. 20, 1205-1218 (2010) · Zbl 1208.60035 · doi:10.1214/09-AAP664
[6] Barral, J., Jin, X., Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and KPZ duality. In: Communications in Mathematical Physics, vol. 323, issue 2, pp. 451-485 (2013). arXiv:1202.5296v2 · Zbl 1287.83019
[7] Barral, J., Kupiainen, A., Nikula, M., Saksman, E., Webb, C.: Basic properties of critical lognormal multiplicative chaos. Ann. Probab. arXiv:1303.4548 (to appear) · Zbl 1337.60100
[8] Biskup, M., Louidor, O.: Extreme local extrema of the two-dimensional discrete Gaussian free field. arXiv:1306.2602 · Zbl 1347.82007
[9] Bramson, M., Ding, J., Zeitouni, O.: Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. arXiv:1301.6669 · Zbl 1355.60046
[10] David, F.: Conformal field theories coupled to 2-D gravity in the conformal gauge. Mod. Phys. Lett. A 3 (1988) · Zbl 1080.81056
[11] David F.: What is the intrinsic geometry of two-dimensional quantum gravity?. Nucl. Phys. B368, 671-700 (1992) · doi:10.1016/0550-3213(92)90219-2
[12] David, F., Eynard, B.: Planar maps, circle patterns and 2d gravity. arXiv:1307.3123 · Zbl 1297.52007
[13] David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Liouville quantum gravity on the Riemann sphere. arXiv:1410.7318 · Zbl 1336.83042
[14] Derrida B., Evans M.R., Speer E.R.: Mean field theory of directed polymers with random complex weights. Commun. Math. Phys. 156, 221-244 (1993) · Zbl 0779.60077 · doi:10.1007/BF02098482
[15] Di Francesco P., Ginsparg P., Zinn-Justin J.: 2D gravity and random matrices. Phys. Rep. 254, 1-133 (1995) · doi:10.1016/0370-1573(94)00084-G
[16] Distler J., Kawai H.: Conformal field theory and 2-D quantum gravity or who’s afraid of Joseph Liouville?. Nucl. Phys. B321, 509-517 (1989) · doi:10.1016/0550-3213(89)90354-4
[17] Dobrinevski A., Le Doussal P., Wiese K.J.: Interference in disordered systems: a particle in a complex random landscape. Phys. Rev. E 83, 061116 (2011) · doi:10.1103/PhysRevE.83.061116
[18] Duplantier, B., Rhodes, R., Sheffield, S., Vargas, V.: Critical Gaussian multiplicative chaos: convergence of the derivative martingale. In: Ann. Probab., vol. 42, no. 5, 1769-1808 (2014). arXiv:1206.1671 · Zbl 1306.60055
[19] Duplantier, B., Rhodes, R., Sheffield, S., Vargas, V.: Renormalization of critical Gaussian multiplicative chaos and KPZ relation. Commun. Math. Phys. 330(1), 283-330 (2014) · Zbl 1297.60033
[20] Duplantier, B., Rhodes, R., Sheffield, S., Vargas, V.: Log-correlated Gaussian fields: an overview. arXiv:1407.5605 · Zbl 1366.60023
[21] Duplantier B., Sheffield S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333-393 (2011) · Zbl 1226.81241 · doi:10.1007/s00222-010-0308-1
[22] Gale D., Shapley L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69, 9-15 (1962) · Zbl 0109.24403 · doi:10.2307/2312726
[23] Garban, C.: Quantum gravity and the KPZ formula, séminaire Bourbaki, 64e année, no. 1052 (2011-2012)
[24] Garban, C., Rhodes, R., Vargas, V.: Liouville Brownian motion. arXiv:1301.2876 · Zbl 1393.60015
[25] Ginsparg, P., Moore, G.: Lectures on 2D gravity and 2D string theory. In: Harvey, J., Polchinski, J. (eds.) Recent Direction in Particle Theory, Proceedings of the 1992 TASI. World Scientific, Singapore (1993) · Zbl 0779.60077
[26] Glimm J., Jaffe A.: Quantum Physics: A Functional Integral Point of View. Springer, Berlin (1981) · Zbl 0461.46051 · doi:10.1007/978-1-4684-0121-9
[27] Hu Y., Shi Z.: Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37(2), 742-789 (2009) · Zbl 1169.60021 · doi:10.1214/08-AOP419
[28] Kabluchko, Z., Klimovsky, A.: Complex random energy model: zeros and fluctuations. In: Probability Theory and Related Fields 2014, vol. 158, issue 1-2, pp. 159-196 (2014). arXiv:1201.5098v3 · Zbl 1292.60052
[29] Kahane J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9(2), 105-150 (1985) · Zbl 0596.60041
[30] Kang, N.-G, Makarov, N.G.: Gaussian free field and conformal field theory. arXiv:1101.1024v3 · Zbl 1280.81004
[31] Klebanov, I.: String theory in two dimensions. arXiv:hep-th/9108019 · Zbl 1021.81837
[32] Knizhnik V.G., Polyakov A.M., Zamolodchikov A.B.: Fractal structure of 2D-quantum gravity. Modern Phys. Lett. A 3(8), 819-826 (1988) · doi:10.1142/S0217732388000982
[33] Lodhia, A., Sheffield, S., Sun, X., Watson, S.: Fractional Gaussian fields: a survey. arXiv:1407.5598 · Zbl 1334.60055
[34] Madaule, T.: Convergence in law for the branching random walk seen from its tip. arXiv:1107.2543v2 · Zbl 1368.60089
[35] Madaule, T.: Maximum of a log-correlated Gaussian field. Annales de l’Institut Henri Poincaré. arXiv:1307.1365 (to appear) · Zbl 1329.60138
[36] Madaule, T., Rhodes, R., Vargas, V: Glassy phase and freezing of log-correlated Gaussian potentials. Ann. Appl. Probab. arXiv:1310.5574 (to appear) · Zbl 1341.60094
[37] Madaule T., Rhodes R., Vargas V.: The glassy phase of complex branching Brownian motion. Commun. Math. Phys. 334(3), 1157-1187 (2015) · Zbl 1322.60177 · doi:10.1007/s00220-014-2257-9
[38] Nakayama Y.: Liouville field theory—a decade after the revolution. Int. J. Mod. Phys. A19, 2771 (2004) · Zbl 1080.81056 · doi:10.1142/S0217751X04019500
[39] Polyakov A.M.: Quantum geometry of bosonic fields. Phys. Lett. 103, 207 (1981) · doi:10.1016/0370-2693(81)90743-7
[40] Rhodes R., Sohier J., Vargas V.: Levy multiplicative chaos and star scale invariant random measures. Ann. Probab. 42(2), 689-724 (2014) · Zbl 1295.60064 · doi:10.1214/12-AOP810
[41] Rhodes R., Vargas V.: Gaussian multiplicative chaos and applications: a review. Probab. Surveys 11, 315-392 (2014) · Zbl 1316.60073 · doi:10.1214/13-PS218
[42] Rhodes R., Vargas V.: Multidimensional multifractal random measures. Electron. J. Probab. 15, 241-258 (2010) · Zbl 1201.60046
[43] Rhodes R., Vargas V.: KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15, 358 (2011) · Zbl 1268.60070 · doi:10.1051/ps/2010007
[44] Robert R., Vargas V.: Gaussian multiplicative chaos revisited. Ann. Probab. 38, 605-631 (2010) · Zbl 1191.60066 · doi:10.1214/09-AOP490
[45] Sheffield S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139, 521-541 (2007) · Zbl 1132.60072 · doi:10.1007/s00440-006-0050-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.