×

Synchronization and stability of two unbalanced rotors with fast antirotation considering energy balance. (English) Zbl 1394.70018

Summary: We consider synchronization and stability of two unbalanced rotors reversely and fast excited by induction motors fixed on an oscillating body. We explore the energy balance of the system and show how the energy is transferred between the rotors via the oscillating body allowing the implementation of the synchronization of the two rotors. An approximate analytical analysis, energy balance method, allows deriving the synchronization condition, and the stability criterion of the synchronization is deduce by disturbance differential equations. Later, to prove the correctness of the theoretical analysis, many features of the vibrating system are computed and discussed by computer simulations. The proposed method may be useful for analyzing and understanding the mechanism of synchronization, stability, and energy balance of similar fast rotation rotors excited by induction motors in vibrating systems.

MSC:

70E50 Stability problems in rigid body dynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Huygens, C., Horologium Pscilatorium, (1673), Paris, France: F. Muguet, Paris, France
[2] Rayleigh, J., Theory of Sound, (1945), New York, NY, USA: Dover Publications, New York, NY, USA
[3] van der Pol, B., Theory of amplitude of free and forced triode vibration, Radio Review, 1, 701-710, (1920)
[4] Blekhman, I. I., Synchronization in Science and Technology, (1988), New York, NY, USA: ASME Press, New York, NY, USA
[5] Wen, B. C.; Fan, J.; Zhao, C. Y.; Xiong, W. L., Vibratory Synchronization and Controlled Synchronization in Engineering, (2009), Beijing, China: Science Press, Beijing, China
[6] Zhang, X.; Wen, B.; Zhao, C., Vibratory synchronization transmission of two exciters in a super-resonant vibrating system, Journal of Mechanical Science and Technology, 28, 6, 2049-2058, (2014) · doi:10.1007/s12206-014-0108-4
[7] Zhang, X.; Wen, B.; Zhao, C., Vibratory synchronization and coupling dynamic characteristics of multiple unbalanced rotors on a mass-spring rigid base, International Journal of Non-Linear Mechanics, 60, 1-8, (2014) · doi:10.1016/j.ijnonlinmec.2013.12.002
[8] Fang, P.; Yang, Q.; Hou, Y.; Chen, Y., Theoretical study on self-synchronization of two homodromy rotors coupled with a pendulum rod in a far-resonant vibrating system, Journal of Vibroengineering, 16, 2188-2204, (2014)
[9] Sperling, L.; Ryzhik, B.; Linz, C.; Duckstein, H., Simulation of two-plane automatic balancing of a rigid rotor, Proceedings of the 2nd International Conference on Control of Oscillations and Chaos (COC ’00)
[10] Balthazar, J. M.; Felix, J. L. P.; Brasil, R. M. L. R. F., Short comments on self-synchronization of two non-ideal sources supported by a flexible portal frame structure, Journal of Vibration and Control, 10, 12, 1739-1748, (2004) · Zbl 1094.74581 · doi:10.1177/1077546304041754
[11] Balthazar, J. M.; Felix, J. L. P.; Brasil, R. M., Some comments on the numerical simulation of self-synchronization of four non-ideal exciters, Applied Mathematics and Computation, 164, 2, 615-625, (2005) · Zbl 1123.70324 · doi:10.1016/j.amc.2004.06.010
[12] Jovanovic, V.; Koshkin, S., Synchronization of Huygens’ clocks and the Poincaré method, Journal of Sound and Vibration, 331, 12, 2887-2900, (2012) · doi:10.1016/j.jsv.2012.01.035
[13] Koluda, P.; Perlikowski, P.; Czolczynski, K.; Kapitaniak, T., Synchronization of two self-excited double pendula, The European Physical Journal: Special Topics, 223, 4, 613-629, (2014) · doi:10.1140/epjst/e2014-02129-7
[14] Koluda, P.; Perlikowski, P.; Czolczynski, K.; Kapitaniak, T., Synchronization configurations of two coupled double pendula, Communications in Nonlinear Science and Numerical Simulation, 19, 4, 977-990, (2014) · doi:10.1016/j.cnsns.2013.08.008
[15] Koluda, P.; Brzeski, P.; Perlikowski, P., Dynamics of n coupled double pendula suspended to the moving beam, International Journal of Structural Stability and Dynamics, 14, 8, (2014) · Zbl 1359.34049 · doi:10.1142/s0219455414400288
[16] Kapitaniak, M.; Czolczynski, K.; Perlikowski, P.; Stefanski, A.; Kapitaniak, T., Synchronous states of slowly rotating pendula, Physics Reports, 541, 1, 1-44, (2014) · Zbl 1357.34088 · doi:10.1016/j.physrep.2014.02.008
[17] Kapitaniak, M.; Lazarek, M.; Nielaczny, M.; Czolczynski, K.; Perlikowski, P.; Kapitaniak, T., Synchronization extends the life time of the desired behavior of globally coupled systems, Scientific Reports, 4, article 4391, (2014) · doi:10.1038/srep04391
[18] Pena-Ramírez, J.; Fey, R. H. B.; Nijmeijer, H., In-phase and anti-phase synchronization of oscillators with Huygens’ coupling, Cybernetics and Physics, 1, 58-66, (2012)
[19] Ramírez, J. P. N.; Aguirre, A. A.; Fey, R. H. B.; Nijmeijer, H., Effects of time delay in the synchronized motion of oscillators with Huygens’ coupling, Proceedings of the 3rd IFAC CHAOS Conference
[20] Yurchenko, D.; Naess, A.; Alevras, P., Pendulum’s rotational motion governed by a stochastic Mathieu equation, Probabilistic Engineering Mechanics, 31, 12-18, (2013) · doi:10.1016/j.probengmech.2012.10.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.