×

zbMATH — the first resource for mathematics

Dynamic contact model of shell for multibody system applications. (English) Zbl 1412.70012
Summary: In a multibody system consisting of shell structures, the contact may appear in any area of shells. It is difficult to simulate the contact of shells with large deformation because of the geometric nonlinearity of deformation and the boundary nonlinearity of contact. This study presents a rotation-free shell formulation and an extended contact discretization in multibody systems using a corotational frame. This model is different from previous formulations in the definition of the local frame and the processing of local large curvature. In order to deal with the shell contact, a unified contact discretization scheme including edge-to-edge contact for facet triangle shell elements is proposed to solve the large penetration problem. A series of numerical examples of multibody dynamics have validated the approach of the nonlinear shell model and contact treatments. Moreover, a practical application of deployment of solar cells shows the capability of the proposed formulation in solving large-scale problems of flexible multibody system with large deformation and contact.

MSC:
70E55 Dynamics of multibody systems
74K25 Shells
74M15 Contact in solid mechanics
Software:
ABAQUS; LS-DYNA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ABAQUS: ABAQUS Theory Guide. Dassault Systèmes, Providence, RI, USA (2017)
[2] ABAQUS: ABAQUS Users’s Guide Volume V: Prescribed Conditions, Constraint & Interactions. Dassault Systèmes, Providence, RI, USA (2017)
[3] Areias, P.; Garção, J.; Pires, E. B.; Barbosa, J. I., Exact corotational shell for finite strains and fracture, Comput. Mech., 48, 385-406, (2011) · Zbl 1360.74133
[4] Arnold, M.; Brüls, O., Convergence of the generalized-\(α \) scheme for constrained mechanical systems, Multibody Syst. Dyn., 18, 185-202, (2007) · Zbl 1121.70003
[5] Bauchau, O.; Choi, J. Y.; Bottasso, C. L., On the modeling of shells in multibody dynamics, Multibody Syst. Dyn., 8, 459-489, (2002) · Zbl 1061.74033
[6] Crisfield, M. A., A unified co-rotational framework solids, shells and beams, Int. J. Solids Struct., 33, 2969-2992, (1996) · Zbl 0905.73067
[7] Das, M.; Barut, A.; Madenci, E., Analysis of multibody systems experiencing large elastic deformations, Multibody Syst. Dyn., 23, 1-31, (2009) · Zbl 1355.70012
[8] Eberhard, P., Hu, B.: Advanced Contact Dynamics. Southeast University Press, Nanjing (2003)
[9] Felippa, C. A.; Haugen, B., A unified formulation of small-strain corotational finite elements: I. Theory, (2005) · Zbl 1093.74055
[10] Flores, F. G.; Oñate, E., Improvements in the membrane behaviour of the three node rotation-free BST shell triangle using an assumed strain approach, Comput. Methods Appl. Mech. Eng., 194, 907-932, (2005) · Zbl 1112.74510
[11] Flores, F. G.; Oñate, E., Wrinkling and folding analysis of elastic membranes using an enhanced rotation-free thin shell triangular element, Finite Elem. Anal. Des., 47, 982-990, (2011)
[12] Gärdsback, M.; Tibert, G., A comparison of rotation-free triangular shell elements for unstructured meshes, Comput. Methods Appl. Mech. Eng., 196, 5001-5015, (2007) · Zbl 1173.74420
[13] Guo, Y. Q.; Gati, W.; Naceur, H.; Batoz, J. L., An efficient DKT rotation free shell element for springback simulation in sheet metal forming, Comput. Struct., 80, 2299-2312, (2002)
[14] Hallquist, J.O.: LS-DYNA Theory manual. March (2006)
[15] Hallquist, J. O.; Goudreau, G. L.; Benson, D. J., Sliding interfaces with contact-impact in large-scale Lagrangian computations, Comput. Methods Appl. Mech. Eng., 51, 107-137, (1985) · Zbl 0567.73120
[16] Klaus-Jurgen, B.; Chaudhary, A., A solution method for planar and axisymmetric contact problems, Int. J. Numer. Methods Eng., 21, 65-88, (1985) · Zbl 0551.73099
[17] Konyukhov, A., Izi, R.: Introduction to Computational Contact Mechanics. Wiley, Chichester (2015) · Zbl 1330.74004
[18] Linhard, J.; Wüchner, R.; Bletzinger, K. U., “Upgrading” membranes to shells—the CEG rotation free shell element and its application in structural analysis, Finite Elem. Anal. Des., 44, 63-74, (2007)
[19] Liu, Z.; Hong, J.; Liu, J., Finite element formulation for dynamics of planar flexible multi-beam system, Multibody Syst. Dyn., 22, 1-26, (2009) · Zbl 1189.74077
[20] Liu, Z.; Liu, J., Experimental validation of rigid-flexible coupling dynamic formulation for hub-beam system, Multibody Syst. Dyn., 40, 303-326, (2017) · Zbl 1376.70003
[21] LS-DYNA: LS-DYNA keyword user’s manual volume I. Livermore Software Technology Corporation, Livermore, California (2017)
[22] Lu, J.; Zheng, C., Dynamic cloth simulation by isogeometric analysis, Comput. Methods Appl. Mech. Eng., 268, 475-493, (2014) · Zbl 1295.74063
[23] Mcdevitt, T. W.; Laursen, T. A., A mortar-finite element formulation for frictional contact problems, Int. J. Numer. Methods Eng., 48, 1525-1547, (2000) · Zbl 0972.74067
[24] Mikkola, A. K.I. M.; Shabana, A. A., A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications, Multibody Syst. Dyn., 9, 283-309, (2003) · Zbl 1183.74295
[25] Moller, T., Fast triangle-triangle intersection test, Doktorsavh. Chalmers Tek. Högsk., 1425, 123-129, (1998)
[26] Nour-Omid, B.; Rankin, C., Finite rotation analysis and consistent linearization using projectors, Comput. Methods Appl. Mech. Eng., 93, 353-384, (1991) · Zbl 0757.73034
[27] Oñate, E.; Cendoya, P.; Miquel, J., Non-linear explicit dynamic analysis of shells using the BST rotation-free triangle, Eng. Comput., 19, 662-706, (2002) · Zbl 1140.74557
[28] Oñate, E.; Cervera, M., Derivation of thin plate bending elements with one degree of freedom per node: a simple three node triangle, Eng. Comput., 10, 543-561, (1993)
[29] Oñate, E.; Flores, F. G., Advances in the formulation of the rotation-free basic shell triangle, Comput. Methods Appl. Mech. Eng., 194, 2406-2443, (2005) · Zbl 1083.74048
[30] Phaal, R.; Calladine, C. R., A simple class of finite elements for plate and shell problems. I: Elements for beams and thin flat plates, Int. J. Numer. Methods Eng., 35, 955-977, (1992) · Zbl 0775.73285
[31] Phaal, R.; Calladine, C. R., Simple class of finite elements for plate and shell problems. II: An element for thin shells, with only translational degrees of freedom, Int. J. Numer. Methods Eng., 35, 979-996, (1992) · Zbl 0775.73286
[32] Puso, M. A.; Laursen, T. A., A mortar segment-to-segment contact method for large deformation solid mechanics, Comput. Methods Appl. Mech. Eng., 193, 601-629, (2004) · Zbl 1060.74636
[33] Sabourin, F.; Brunet, M., Analysis of plates and shells with a simplified three node triangular element, Thin-Walled Struct., 21, 209-223, (1995)
[34] Sabourin, F.; Brunet, M., Detailed formulation of the rotation-free triangular element “S3” for general purpose shell analysis, Eng. Comput., 23, 469-502, (2006) · Zbl 1182.74207
[35] Schiehlen, W.; Guse, N.; Seifried, R., Multibody dynamics in computational mechanics and engineering applications, Comput. Methods Appl. Mech. Eng., 195, 5509-5522, (2006) · Zbl 1119.70007
[36] Schiehlen, W.; Seifried, R., Three approaches for elastodynamic contact in multibody systems, Multibody Syst. Dyn., 12, 1-16, (2004) · Zbl 1174.70312
[37] Shabana, A.; Christensen, A., Three dimensional absolute nodal coordinate formulation: plate problem, Int. J. Numer. Methods Eng., 40, 2775-2790, (1997) · Zbl 0897.73068
[38] Simo, J., On a stress resultant geometrically exact shell model. Part VII: Shell intersections with 5/6-DOF finite element formulations, Comput. Methods Appl. Mech. Eng., 108, 319-339, (1993) · Zbl 0855.73074
[39] Sze, K. Y.; Zhou, Y. X., An efficient rotation-free triangle for drape/cloth simulations—part I: model improvement, dynamic simulation and adaptive remeshing, Int. J. Comput. Methods, 13, (2016) · Zbl 1359.74255
[40] Temizer, I.; Wriggers, P.; Hughes, T., Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS, Comput. Methods Appl. Mech. Eng., 209-212, 115-128, (2012) · Zbl 1243.74130
[41] Wriggers, P.: Computational Contact Mechanics. Springer, Berlin (2006) · Zbl 1104.74002
[42] Wriggws, P.; Stbin, E., Finite element formulation deformation impact-contact with friction of large problems, Comput. Struct., 37, 319-331, (1990) · Zbl 0727.73080
[43] Zhou, Y.; Sze, K., A geometric nonlinear rotation-free triangle and its application to drape simulation, Int. J. Numer. Methods Eng., 89, 509-536, (2011) · Zbl 1242.74180
[44] Zhou, Y.X., Sze, K.: An Efficient Rotation-Free Triangle and its Application in Cloth Simulations. Ph.D. thesis, The University of Hong Kong (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.