Dangskul, Supreedee Stability of functional equations in a single variable via JS-metrics. (English) Zbl 07330771 J. Math. Anal. Appl. 499, No. 2, Article ID 125065, 11 p. (2021). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{S. Dangskul}, J. Math. Anal. Appl. 499, No. 2, Article ID 125065, 11 p. (2021; Zbl 07330771) Full Text: DOI
Nuino, Ahmed On the Brzdȩk’s fixed point approach to stability of a Drygas functional equation in 2-Banach spaces. (English) Zbl 07328308 J. Fixed Point Theory Appl. 23, No. 2, Paper No. 18, 17 p. (2021). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{A. Nuino}, J. Fixed Point Theory Appl. 23, No. 2, Paper No. 18, 17 p. (2021; Zbl 07328308) Full Text: DOI
Rassias, John Michael; Pasupathi, Narasimman; Saadati, Reza; de la Sen, Manuel Approximation of mixed Euler-Lagrange \(\sigma\)-cubic-quartic functional equation in Felbin’s type f-NLS. (English) Zbl 07319852 J. Funct. Spaces 2021, Article ID 8068673, 7 p. (2021). MSC: 39B82 39B52 46S40 47S40 PDF BibTeX XML Cite \textit{J. M. Rassias} et al., J. Funct. Spaces 2021, Article ID 8068673, 7 p. (2021; Zbl 07319852) Full Text: DOI
Yang, Yue; Meng, Fanwei A kind of stricter Hyers-Ulam stability of second order linear differential equations of Carathéodory type. (English) Zbl 07317515 Appl. Math. Lett. 115, Article ID 106946, 8 p. (2021). MSC: 65 35 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{F. Meng}, Appl. Math. Lett. 115, Article ID 106946, 8 p. (2021; Zbl 07317515) Full Text: DOI
Guan, Yi; Fečkan, Michal; Wang, Jinrong Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. (English) Zbl 07314905 Discrete Contin. Dyn. Syst. 41, No. 3, 1157-1176 (2021). MSC: 34C25 34D PDF BibTeX XML Cite \textit{Y. Guan} et al., Discrete Contin. Dyn. Syst. 41, No. 3, 1157--1176 (2021; Zbl 07314905) Full Text: DOI
Govindan, Vediyappan; Hammachukiattikul, Porpattama; Rajchakit, Grienggrai; Gunasekaran, Nallappan; Vadivel, R. A new approach to Hyers-Ulam stability of \(r\)-variable quadratic functional equations. (English) Zbl 07311225 J. Funct. Spaces 2021, Article ID 6628733, 10 p. (2021). MSC: 39B82 47H10 PDF BibTeX XML Cite \textit{V. Govindan} et al., J. Funct. Spaces 2021, Article ID 6628733, 10 p. (2021; Zbl 07311225) Full Text: DOI
Murugan, Veerapazham; Palanivel, Rajendran Iterative roots of continuous functions and Hyers-Ulam stability. (English) Zbl 07310556 Aequationes Math. 95, No. 1, 107-124 (2021). MSC: 39B12 39A30 26A18 26A48 65H04 PDF BibTeX XML Cite \textit{V. Murugan} and \textit{R. Palanivel}, Aequationes Math. 95, No. 1, 107--124 (2021; Zbl 07310556) Full Text: DOI
Baias, Alina Ramona; Popa, Dorian On the best Ulam constant of a higher order linear difference equation. (English) Zbl 07300219 Bull. Sci. Math. 166, Article ID 102928, 13 p. (2021). MSC: 39A30 39A06 PDF BibTeX XML Cite \textit{A. R. Baias} and \textit{D. Popa}, Bull. Sci. Math. 166, Article ID 102928, 13 p. (2021; Zbl 07300219) Full Text: DOI
Mohiuddine, Syed Abdul; Rassias, John Michael; Alotaibi, Abdullah Solution of the Ulam stability problem for Euler-Lagrange \(k\)-quintic mappings. (English) Zbl 07331829 Georgian Math. J. 27, No. 4, 585-592 (2020). MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{S. A. Mohiuddine} et al., Georgian Math. J. 27, No. 4, 585--592 (2020; Zbl 07331829) Full Text: DOI
Tate, Shivaji Ramchandra; Dinde, Hambirrao Tatyasaheb Ulam stabilities for nonlinear fractional integro-differential equations with constant coefficient via Pachpatte’s inequality. (English) Zbl 07326393 J. Math. Model. 8, No. 3, 257-278 (2020). MSC: 26A33 45J05 34K10 45M10 PDF BibTeX XML Cite \textit{S. R. Tate} and \textit{H. T. Dinde}, J. Math. Model. 8, No. 3, 257--278 (2020; Zbl 07326393) Full Text: DOI
Maghsoudi, Mohammad; Bodaghi, Abasalt On the stability of multi \(m\)-Jensen mappings. (English) Zbl 07314442 Casp. J. Math. Sci. 9, No. 2, 199-209 (2020). MSC: 39B52 39B72 39B82 46B03 PDF BibTeX XML Cite \textit{M. Maghsoudi} and \textit{A. Bodaghi}, Casp. J. Math. Sci. 9, No. 2, 199--209 (2020; Zbl 07314442) Full Text: DOI
Behroozizadeh, H.; Azadi Kenary, H. Stability of special functional equations on Banach lattices. (English) Zbl 1454.47062 J. Math. Ext. 14, No. 2, 69-80 (2020). MSC: 39B82 39B72 PDF BibTeX XML Cite \textit{H. Behroozizadeh} and \textit{H. Azadi Kenary}, J. Math. Ext. 14, No. 2, 69--80 (2020; Zbl 1454.47062) Full Text: Link
Aruldass, Antony Raj; Pachaiyappan, Divyakumari; Lee, Jung-Rye Duotrigintic functional equation and its stability in Banach spaces. (English) Zbl 07312264 Korean J. Math. 28, No. 3, 525-537 (2020). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{A. R. Aruldass} et al., Korean J. Math. 28, No. 3, 525--537 (2020; Zbl 07312264) Full Text: DOI
Aribou, Youssef; Rossafi, Mohamed Hyperstability of the \(k\)-cubic functional equation in non-Archimedean Banach spaces. (English) Zbl 07311480 J. Math. 2020, Article ID 8843464, 10 p. (2020). MSC: 39 11 PDF BibTeX XML Cite \textit{Y. Aribou} and \textit{M. Rossafi}, J. Math. 2020, Article ID 8843464, 10 p. (2020; Zbl 07311480) Full Text: DOI
Sharma, R. K.; Chandok, Sumit Multivalued problems, orthogonal mappings, and fractional integro-differential equation. (English) Zbl 07307407 J. Math. 2020, Article ID 6615478, 8 p. (2020). MSC: 45 47 PDF BibTeX XML Cite \textit{R. K. Sharma} and \textit{S. Chandok}, J. Math. 2020, Article ID 6615478, 8 p. (2020; Zbl 07307407) Full Text: DOI
Gul, Rozi; Sarwar, Muhammad; Shah, Kamal; Abdeljawad, Thabet; Jarad, Fahd Qualitative analysis of implicit Dirichlet boundary value problem for Caputo-Fabrizio fractional differential equations. (English) Zbl 07300487 J. Funct. Spaces 2020, Article ID 4714032, 9 p. (2020). MSC: 35R11 35G30 PDF BibTeX XML Cite \textit{R. Gul} et al., J. Funct. Spaces 2020, Article ID 4714032, 9 p. (2020; Zbl 07300487) Full Text: DOI
Shah, Syed Omar; Zada, Akbar; Muzamil, Muzamil; Tayyab, Muhammad; Rizwan, Rizwan On the Bielecki-Ulam’s type stability results of first order non-linear impulsive delay dynamic systems on time scales. (English) Zbl 07299281 Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 98, 17 p. (2020). MSC: 34K42 34N05 34K27 34K45 47N20 PDF BibTeX XML Cite \textit{S. O. Shah} et al., Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 98, 17 p. (2020; Zbl 07299281) Full Text: DOI
Zada, Akbar; Pervaiz, Bakhtawar; Alzabut, Jehad; Shah, Syed Omar Further results on Ulam stability for a system of first-order nonsingular delay differential equations. (English) Zbl 07271201 Demonstr. Math. 53, 225-235 (2020). MSC: 34K27 34K20 PDF BibTeX XML Cite \textit{A. Zada} et al., Demonstr. Math. 53, 225--235 (2020; Zbl 07271201) Full Text: DOI
Falihi, S.; Bodaghi, A.; Shojaee, B. A characterization of multi-mixed additive-quadratic mappings and a fixed point application. (English) Zbl 1451.39025 J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 4, 235-247 (2020) and Izv. Nats. Akad. Nauk Armen., Mat. 55, No. 4, 31-46 (2020). MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{S. Falihi} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 4, 235--247 (2020; Zbl 1451.39025) Full Text: DOI
Anderson, Douglas R.; Onitsuka, Masakazu; Rassias, John Michael Best constant for Ulam stability of first-order \(h\)-difference equations with periodic coefficient. (English) Zbl 1451.39014 J. Math. Anal. Appl. 491, No. 2, Article ID 124363, 14 p. (2020). MSC: 39A30 39B82 PDF BibTeX XML Cite \textit{D. R. Anderson} et al., J. Math. Anal. Appl. 491, No. 2, Article ID 124363, 14 p. (2020; Zbl 1451.39014) Full Text: DOI
Bodaghi, Abasalt; Pinelas, Sandra; Vediyappan, Govindan; Gunesekaran, Kokila An \(n\)-dimensional cubic functional equation and its Hyers-Ulam stability. (English) Zbl 1450.39011 J. Anal. 28, No. 3, 663-682 (2020). MSC: 39B52 39B72 39B82 54A40 PDF BibTeX XML Cite \textit{A. Bodaghi} et al., J. Anal. 28, No. 3, 663--682 (2020; Zbl 1450.39011) Full Text: DOI
Senasukh, Jedsada; Saejung, Satit A note on the stability of some functional equations on certain groupoids. (English) Zbl 07259304 Constr. Math. Anal. 3, No. 2, 96-103 (2020). MSC: 39B52 39B82 54C60 47H10 PDF BibTeX XML Cite \textit{J. Senasukh} and \textit{S. Saejung}, Constr. Math. Anal. 3, No. 2, 96--103 (2020; Zbl 07259304) Full Text: DOI
Ali, Arshad; Shah, K. Ulam-Hyers stability analysis of a three-point boundary-value problem for fractional differential equations. (English) Zbl 1452.34009 Ukr. Math. J. 72, No. 2, 161-176 (2020) and Ukr. Mat. Zh. 72, No. 2, 147-160 (2020). MSC: 34A08 34B15 34D10 34B10 PDF BibTeX XML Cite \textit{A. Ali} and \textit{K. Shah}, Ukr. Math. J. 72, No. 2, 161--176 (2020; Zbl 1452.34009) Full Text: DOI
Haddadi, M. Ternary quadratic Pompeiu on ternary Banach algebras. (English) Zbl 1452.39009 Math. Sci., Springer 14, No. 2, 121-128 (2020). MSC: 39B72 39B82 46H05 PDF BibTeX XML Cite \textit{M. Haddadi}, Math. Sci., Springer 14, No. 2, 121--128 (2020; Zbl 1452.39009) Full Text: DOI
Ramzanpour, Elahe; Bodaghi, Abasalt; Gilani, Alireza Stability and hyperstability of multi-additive-cubic mappings in intuitionistic fuzzy normed spaces. (English) Zbl 1448.39048 Honam Math. J. 42, No. 2, 391-409 (2020). MSC: 39B82 39B52 39B72 47H10 54A40 PDF BibTeX XML Cite \textit{E. Ramzanpour} et al., Honam Math. J. 42, No. 2, 391--409 (2020; Zbl 1448.39048) Full Text: DOI
Benzarouala, Chaimaa; Oubbi, Lahbib Ulam-stability of a generalized linear functional equation, a fixed point approach. (English) Zbl 1448.39045 Aequationes Math. 94, No. 5, 989-1000 (2020). MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{C. Benzarouala} and \textit{L. Oubbi}, Aequationes Math. 94, No. 5, 989--1000 (2020; Zbl 1448.39045) Full Text: DOI
Moslehian, Mohammad Sal Approximate \(n\)-idempotents and generalized Aluthge transform. (English) Zbl 07245827 Aequationes Math. 94, No. 5, 979-987 (2020). Reviewer: Jacek Chmieliński (Kraków) MSC: 47A55 39B82 47B15 PDF BibTeX XML Cite \textit{M. S. Moslehian}, Aequationes Math. 94, No. 5, 979--987 (2020; Zbl 07245827) Full Text: DOI
García, G.; Mora, G. On the Ulam-Hyers stability of the complex functional equation \(F(z)+F(2z)+\cdots +F(nz)=0 \). (English) Zbl 1451.39026 Aequationes Math. 94, No. 5, 899-911 (2020). Reviewer: Maryam Amyari (Mashhad) MSC: 39B82 39B32 PDF BibTeX XML Cite \textit{G. García} and \textit{G. Mora}, Aequationes Math. 94, No. 5, 899--911 (2020; Zbl 1451.39026) Full Text: DOI
Eilers, Søren; Shulman, Tatiana; Sørensen, Adam P. W. \(C^\ast\)-stability of discrete groups. (English) Zbl 07243324 Adv. Math. 373, Article ID 107324, 41 p. (2020). MSC: 46L 20 PDF BibTeX XML Cite \textit{S. Eilers} et al., Adv. Math. 373, Article ID 107324, 41 p. (2020; Zbl 07243324) Full Text: DOI
Jin, Sun-Sook; Lee, Yang-Hi A fixed point approach to the stability of the functional equations related to an additive and quartic mapping. (English) Zbl 1447.39018 Nonlinear Funct. Anal. Appl. 25, No. 2, 249-259 (2020). MSC: 39B82 47H10 PDF BibTeX XML Cite \textit{S.-S. Jin} and \textit{Y.-H. Lee}, Nonlinear Funct. Anal. Appl. 25, No. 2, 249--259 (2020; Zbl 1447.39018) Full Text: Link
Lee, Yang-Hi; Jung, Soon-Mo Stability of some cubic-additive functional equations. (English) Zbl 1447.39021 Nonlinear Funct. Anal. Appl. 25, No. 1, 35-54 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, Nonlinear Funct. Anal. Appl. 25, No. 1, 35--54 (2020; Zbl 1447.39021) Full Text: Link
Phochai, Theerayoot; Saejung, Satit Hyperstability of generalised linear functional equations in several variables. (English) Zbl 1447.39023 Bull. Aust. Math. Soc. 102, No. 2, 293-302 (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 39B62 PDF BibTeX XML Cite \textit{T. Phochai} and \textit{S. Saejung}, Bull. Aust. Math. Soc. 102, No. 2, 293--302 (2020; Zbl 1447.39023) Full Text: DOI
Zada, Akbar; Ali, Nasir; Riaz, Usman Ulam’s stability of multi-point implicit boundary value problems with non-instantaneous impulses. (English) Zbl 1450.34012 Boll. Unione Mat. Ital. 13, No. 3, 305-328 (2020). MSC: 34A08 34A09 34A37 34B10 47N20 34D10 PDF BibTeX XML Cite \textit{A. Zada} et al., Boll. Unione Mat. Ital. 13, No. 3, 305--328 (2020; Zbl 1450.34012) Full Text: DOI
Park, Choonkil; Rassias, Themistocles M. Additive-quadratic functional inequalities. (English) Zbl 07225659 Daras, Nicholas J. (ed.) et al., Computational mathematics and variational analysis. Cham: Springer (ISBN 978-3-030-44624-6/hbk; 978-3-030-44625-3/ebook). Springer Optimization and Its Applications 159, 315-341 (2020). MSC: 65Jxx 49Jxx PDF BibTeX XML Cite \textit{C. Park} and \textit{T. M. Rassias}, Springer Optim. Appl. 159, 315--341 (2020; Zbl 07225659) Full Text: DOI
Lee, Jung Rye; Park, Choonkil; Rassias, Themistocles M. Additive \(( \rho_1, \rho_2)\)-functional inequalities in complex Banach spaces. (English) Zbl 07225654 Daras, Nicholas J. (ed.) et al., Computational mathematics and variational analysis. Cham: Springer (ISBN 978-3-030-44624-6/hbk; 978-3-030-44625-3/ebook). Springer Optimization and Its Applications 159, 227-245 (2020). MSC: 65Jxx 49Jxx PDF BibTeX XML Cite \textit{J. R. Lee} et al., Springer Optim. Appl. 159, 227--245 (2020; Zbl 07225654) Full Text: DOI
Kang, Dongseung; Kim, Hoewoon B. Generalized Hyers-Ulam stability of diffusion equation in the \(n\)-dimensional Euclidean space, \( \mathbb{R}^n\). (English) Zbl 1440.35010 Appl. Math. Lett. 103, Article ID 106169, 6 p. (2020). MSC: 35B35 35K05 35K15 PDF BibTeX XML Cite \textit{D. Kang} and \textit{H. B. Kim}, Appl. Math. Lett. 103, Article ID 106169, 6 p. (2020; Zbl 1440.35010) Full Text: DOI
Kim, Gwang Hui; Lee, Yang-Hi Stability of an additive-quadratic-quartic functional equation. (English) Zbl 1436.39021 Demonstr. Math. 53, 1-7 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{G. H. Kim} and \textit{Y.-H. Lee}, Demonstr. Math. 53, 1--7 (2020; Zbl 1436.39021) Full Text: DOI
Park, Choonkil; Paokanta, Siriluk; Suparatulatorn, Raweerote Ulam stability of bihomomorphisms and biderivations in Banach algebras. (English) Zbl 1439.39013 J. Fixed Point Theory Appl. 22, No. 2, Paper No. 27, 18 p. (2020). Reviewer: Maryam Amyari (Mashhad) MSC: 39B52 39B82 39B62 46L05 47B47 47H10 46L57 PDF BibTeX XML Cite \textit{C. Park} et al., J. Fixed Point Theory Appl. 22, No. 2, Paper No. 27, 18 p. (2020; Zbl 1439.39013) Full Text: DOI
Sharma, Ajay K.; Sharma, Aakriti Boundedness, compactness and the Hyers-Ulam stability of a linear combination of differential operators. (English) Zbl 1441.47042 Complex Anal. Oper. Theory 14, No. 1, Paper No. 14, 12 p. (2020). Reviewer: Vagia Vlachou (Rio) MSC: 47B37 47E05 46E20 39B82 PDF BibTeX XML Cite \textit{A. K. Sharma} and \textit{A. Sharma}, Complex Anal. Oper. Theory 14, No. 1, Paper No. 14, 12 p. (2020; Zbl 1441.47042) Full Text: DOI
Choi, Chang-Kwon; Lee, Bogeun Stability of mixed additive-quadratic and additive-Drygas functional equations. (English) Zbl 1434.39024 Result. Math. 75, No. 1, Paper No. 38, 14 p. (2020). Reviewer: Maryam Amyari (Mashhad) MSC: 39B82 39B52 54E52 PDF BibTeX XML Cite \textit{C.-K. Choi} and \textit{B. Lee}, Result. Math. 75, No. 1, Paper No. 38, 14 p. (2020; Zbl 1434.39024) Full Text: DOI
Salehi, N.; Modarres, S. M. S. A fixed point method for stability of involutions on multi-Banach algebra. (English) Zbl 1440.39021 J. Fixed Point Theory Appl. 22, No. 1, Paper No. 20, 11 p. (2020). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 39B82 46L05 46L35 PDF BibTeX XML Cite \textit{N. Salehi} and \textit{S. M. S. Modarres}, J. Fixed Point Theory Appl. 22, No. 1, Paper No. 20, 11 p. (2020; Zbl 1440.39021) Full Text: DOI
Senthil Kumar, Beri Venkatachalapathy; Bodaghi, Abasalt Approximation of the Jensen type rational functional equation by a fixed point technique. (English) Zbl 1431.39015 Bol. Soc. Parana. Mat. (3) 38, No. 3, 125-132 (2020). MSC: 39B82 39B72 PDF BibTeX XML Cite \textit{B. V. Senthil Kumar} and \textit{A. Bodaghi}, Bol. Soc. Parana. Mat. (3) 38, No. 3, 125--132 (2020; Zbl 1431.39015) Full Text: Link
Bodaghi, Abasalt; Senthil Kumar, Beri Venkatachalapathy; Rassias, John Michael Stabilities and non-stabilities of the reciprocal-nonic and the reciprocal-decic functional equations. (English) Zbl 1431.39013 Bol. Soc. Parana. Mat. (3) 38, No. 3, 9-22 (2020). MSC: 39B82 39B72 PDF BibTeX XML Cite \textit{A. Bodaghi} et al., Bol. Soc. Parana. Mat. (3) 38, No. 3, 9--22 (2020; Zbl 1431.39013) Full Text: Link
Feige, Uriel; Feldman, Michal; Talgam-Cohen, Inbal Approximate modularity revisited. (English) Zbl 1437.68072 SIAM J. Comput. 49, No. 1, 67-97 (2020). MSC: 68Q32 28A10 90C27 PDF BibTeX XML Cite \textit{U. Feige} et al., SIAM J. Comput. 49, No. 1, 67--97 (2020; Zbl 1437.68072) Full Text: DOI
Harikrishnan, S.; Kanagarajan, K.; Vivek, D. Some existence and stability results for integro-differential equation by Hilfer-Katugampola fractional derivative. (English) Zbl 1429.34079 Palest. J. Math. 9, No. 1, 254-262 (2020). MSC: 34K37 34K05 34A12 37B25 45J05 PDF BibTeX XML Cite \textit{S. Harikrishnan} et al., Palest. J. Math. 9, No. 1, 254--262 (2020; Zbl 1429.34079) Full Text: Link
Almahalebi, Muaadh; Sirouni, Mohamed; Kabbaj, Samir Ultrametric hyperstability of a Cauchy-Jensen type functional equation. (English) Zbl 1429.39021 Palest. J. Math. 9, No. 1, 245-253 (2020). MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{M. Almahalebi} et al., Palest. J. Math. 9, No. 1, 245--253 (2020; Zbl 1429.39021) Full Text: Link
Sayar, Khaled Yahya Naif; Bergam, Amal Approximate solutions of a quadratic functional equation in 2-Banach spaces using fixed point theorem. (English) Zbl 1428.39033 J. Fixed Point Theory Appl. 22, No. 1, Paper No. 3, 16 p. (2020). MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{K. Y. N. Sayar} and \textit{A. Bergam}, J. Fixed Point Theory Appl. 22, No. 1, Paper No. 3, 16 p. (2020; Zbl 1428.39033) Full Text: DOI
Zada, Akbar; Mashal, Asia Stability analysis of \(n^{th}\) order nonlinear impulsive differential equations in quasi-Banach space. (English) Zbl 1432.34075 Numer. Funct. Anal. Optim. 41, No. 3, 294-321 (2020). MSC: 34D10 34A37 34B10 26A33 34G20 PDF BibTeX XML Cite \textit{A. Zada} and \textit{A. Mashal}, Numer. Funct. Anal. Optim. 41, No. 3, 294--321 (2020; Zbl 1432.34075) Full Text: DOI
Senthil Kumar, Beri Venkatachalapathy; Dutta, Hemen Fundamental stabilities of various forms of complex valued functional equations. (English) Zbl 1423.39037 Dutta, Hemen (ed.) et al., Applied mathematical analysis: theory, methods, and applications. Cham: Springer. Stud. Syst. Decis. Control 177, 29-59 (2020). MSC: 39B82 39B72 PDF BibTeX XML Cite \textit{B. V. Senthil Kumar} and \textit{H. Dutta}, Stud. Syst. Decis. Control 177, 29--59 (2020; Zbl 1423.39037) Full Text: DOI
Kalvandi, Vida; Eghbali, Nasrin; Rassias, John Michael Mittag-Leffler-Hyers-Ulam stability of linear differential equations of second order. (English) Zbl 07314081 J. Math. Ext. 13, No. 1, 29-43 (2019). MSC: 34A08 34D10 34A30 PDF BibTeX XML Cite \textit{V. Kalvandi} et al., J. Math. Ext. 13, No. 1, 29--43 (2019; Zbl 07314081) Full Text: Link
Anderson, Douglas R. Hyers-Ulam stability for a first-order linear proportional nabla difference operator. (English) Zbl 07245452 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer (ISBN 978-3-030-28949-2/hbk; 978-3-030-28950-8/ebook). 255-272 (2019). MSC: 39B82 39A70 39A30 PDF BibTeX XML Cite \textit{D. R. Anderson}, in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 255--272 (2019; Zbl 07245452) Full Text: DOI
Anderson, Douglas R.; Onitsuka, Masakazu Hyers-Ulam stability of a discrete diamond-alpha derivative equation. (English) Zbl 1448.39033 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 237-254 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39A70 39B82 39B22 39A30 PDF BibTeX XML Cite \textit{D. R. Anderson} and \textit{M. Onitsuka}, in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 237--254 (2019; Zbl 1448.39033) Full Text: DOI
Ramdoss, Murali; Arumugam, Ponmana Selvan Fourier transforms and Ulam stabilities of linear differential equations. (English) Zbl 1451.34075 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 195-217 (2019). MSC: 34D10 42A38 PDF BibTeX XML Cite \textit{M. Ramdoss} and \textit{P. S. Arumugam}, in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 195--217 (2019; Zbl 1451.34075) Full Text: DOI
Nuino, Ahmed; Almahalebi, Muaadh; Charifi, Ahmed Measure zero stability problem for Drygas functional equation with complex involution. (English) Zbl 07245448 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer (ISBN 978-3-030-28949-2/hbk; 978-3-030-28950-8/ebook). 183-193 (2019). Reviewer: Stefan Czerwik (Gliwice) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{A. Nuino} et al., in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 183--193 (2019; Zbl 07245448) Full Text: DOI
Pinelas, Sandra; Govindan, V.; Tamilvanan, K. Stability of an \(n\)-dimensional functional equation in Banach space and fuzzy normed space. (English) Zbl 1452.39007 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 159-181 (2019). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B52 39B82 54A40 PDF BibTeX XML Cite \textit{S. Pinelas} et al., in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 159--181 (2019; Zbl 1452.39007) Full Text: DOI
Kumar, B. V. Senthil; Sabarinathan, S.; Rassias, M. J. Stabilities of MIQD and MIQA functional equations via fixed point technique. (English) Zbl 1450.39017 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 143-152 (2019). Reviewer: Maryam Amyari (Mashhad) MSC: 39B82 39B52 47H10 12J25 26E30 PDF BibTeX XML Cite \textit{B. V. S. Kumar} et al., in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 143--152 (2019; Zbl 1450.39017) Full Text: DOI
Ramdoss, Murali; Aruldass, Antony Raj General solution and Hyers-Ulam stability of duotrigintic functional equation in multi-Banach spaces. (English) Zbl 07245444 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer (ISBN 978-3-030-28949-2/hbk; 978-3-030-28950-8/ebook). 125-141 (2019). Reviewer: Stefan Czerwik (Gliwice) MSC: 39B52 39B82 PDF BibTeX XML Cite \textit{M. Ramdoss} and \textit{A. R. Aruldass}, in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 125--141 (2019; Zbl 07245444) Full Text: DOI
Chung, Jaeyoung; Rassias, John Michael; Lee, Bogeun; Choi, Chang-Kwon Hyperstability of a linear functional equation on restricted domains. (English) Zbl 1450.39014 Anastassiou, George A. (ed.) et al., Frontiers in functional equations and analytic inequalities. Cham: Springer. 27-42 (2019). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{J. Chung} et al., in: Frontiers in functional equations and analytic inequalities. Cham: Springer. 27--42 (2019; Zbl 1450.39014) Full Text: DOI
Wójcik, Paweł On geometry of Banach function modules: selected topics. (English) Zbl 1455.46020 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer. 453-468 (2019). Reviewer: T.S.S.R.K. Rao (Bangalore) MSC: 46B20 46B04 46E40 46-02 PDF BibTeX XML Cite \textit{P. Wójcik}, in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 453--468 (2019; Zbl 1455.46020) Full Text: DOI
Székelyhidi, László Invariant means in stability theory. (English) Zbl 1441.39031 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer. 409-451 (2019). MSC: 39B82 39B52 39-02 43A07 PDF BibTeX XML Cite \textit{L. Székelyhidi}, in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 409--451 (2019; Zbl 1441.39031) Full Text: DOI
Moszner, Zenon Miscellanea about the stability of functional equations. (English) Zbl 1448.39047 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer. 231-271 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B22 39A30 PDF BibTeX XML Cite \textit{Z. Moszner}, in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 231--271 (2019; Zbl 1448.39047) Full Text: DOI
Lee, Jung Rye; Park, Choonkil; Rassias, Themistocles M. Bi-additive s-functional inequalities and quasi-\(\ast\)-multipliers on Banach \(\ast\)-algebras. (English) Zbl 07245312 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer (ISBN 978-3-030-28971-3/hbk; 978-3-030-28972-0/ebook). 199-215 (2019). Reviewer: Sanja Varošanec (Zagreb) MSC: 39B62 39B52 39B55 PDF BibTeX XML Cite \textit{J. R. Lee} et al., in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 199--215 (2019; Zbl 07245312) Full Text: DOI
Belfakih, Keltouma; Elqorachi, Elhoucien; Rassias, Themistocles M. Solutions and stability of some functional equations on semigroups. (English) Zbl 1447.39017 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer. 167-198 (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{K. Belfakih} et al., in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 167--198 (2019; Zbl 1447.39017) Full Text: DOI
Găvruţa, Paşc; Manolescu, Laura Approximation by cubic mappings. (English) Zbl 1447.39015 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer. 153-165 (2019). Reviewer: Mohammad Sajid (Buraidah) MSC: 39B52 39B82 39B12 PDF BibTeX XML Cite \textit{P. Găvruţa} and \textit{L. Manolescu}, in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 153--165 (2019; Zbl 1447.39015) Full Text: DOI
El-hady, El-Sayed On solutions and stability of a functional equation arising from a queueing system. (English) Zbl 1447.39011 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer. 143-152 (2019). MSC: 39B22 39B82 60K25 PDF BibTeX XML Cite \textit{E.-S. El-hady}, in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 143--152 (2019; Zbl 1447.39011) Full Text: DOI
El-hady, El-Sayed On stability of the functional equation of p-Wright affine functions in 2-Banach spaces. (English) Zbl 1450.39015 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer. 131-141 (2019). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{E.-S. El-hady}, in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 131--141 (2019; Zbl 1450.39015) Full Text: DOI
Dung, Nguyen Van; Sintunavarat, Wutiphol Ulam-Hyers stability of functional equations in quasi-\(\beta\)-Banach spaces. (English) Zbl 1447.39024 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer, 97-130 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{N. Van Dung} and \textit{W. Sintunavarat}, in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 97--130 (2019; Zbl 1447.39024) Full Text: DOI
Benzarouala, Chaimaa; Oubbi, Lahbib A purely fixed point approach to the Ulam-Hyers stability and hyperstability of a general functional equation. (English) Zbl 1448.39044 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer. 47-56 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 47H10 47H14 PDF BibTeX XML Cite \textit{C. Benzarouala} and \textit{L. Oubbi}, in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 47--56 (2019; Zbl 1448.39044) Full Text: DOI
Agbeko, Nutefe Kwami Survey on Cauchy functional equation in lattice environments. (English) Zbl 1448.39042 Brzdęk, Janusz (ed.) et al., Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4–9, 2016 and Timisoara, Romania, October 8–13, 2018. Cham: Springer. 1-46 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B42 39B52 46S40 46B42 PDF BibTeX XML Cite \textit{N. K. Agbeko}, in: Ulam type stability. Based on the conferences on Ulam type stability (CUTS), Cluj-Napoca, Romania, July 4--9, 2016 and Timisoara, Romania, October 8--13, 2018. Cham: Springer. 1--46 (2019; Zbl 1448.39042) Full Text: DOI
Lee, Jung Rye; Park, Choonkil; Rassias, Themistocles M.; Zhang, Xiaohong Additive \(\rho\)-functional inequalities and their applications. (English) Zbl 07216130 Rassias, Themistocles M. (ed.) et al., Mathematical analysis and applications. Cham: Springer (ISBN 978-3-030-31338-8/hbk; 978-3-030-31339-5/ebook). Springer Optimization and Its Applications 154, 391-410 (2019). MSC: 47B 46H 39B PDF BibTeX XML Cite \textit{J. R. Lee} et al., Springer Optim. Appl. 154, 391--410 (2019; Zbl 07216130) Full Text: DOI
Lee, Jung Rye; Park, Choonkil; Rassias, Themistocles M. Additive functional inequalities and partial multipliers in complex Banach algebras. (English) Zbl 07216129 Rassias, Themistocles M. (ed.) et al., Mathematical analysis and applications. Cham: Springer (ISBN 978-3-030-31338-8/hbk; 978-3-030-31339-5/ebook). Springer Optimization and Its Applications 154, 365-389 (2019). MSC: 47B 46H 39B PDF BibTeX XML Cite \textit{J. R. Lee} et al., Springer Optim. Appl. 154, 365--389 (2019; Zbl 07216129) Full Text: DOI
El-Fassi, Iz-iddine On hyperstability of the two-variable Jensen functional equation on restricted domain. (English) Zbl 1442.39034 Rassias, Themistocles M. (ed.) et al., Mathematical analysis and applications. Cham: Springer. Springer Optim. Appl. 154, 165-183 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B62 47H14 47H10 PDF BibTeX XML Cite \textit{I.-i. El-Fassi}, Springer Optim. Appl. 154, 165--183 (2019; Zbl 1442.39034) Full Text: DOI
Park, Won-Gil; Bae, Jae-Hyeong Hyers-Ulam stability of quadratic forms in 2-normed spaces. (English) Zbl 1436.39018 Demonstr. Math. 52, 496-502 (2019). MSC: 39B52 39B72 39B82 PDF BibTeX XML Cite \textit{W.-G. Park} and \textit{J.-H. Bae}, Demonstr. Math. 52, 496--502 (2019; Zbl 1436.39018) Full Text: DOI
Lee, Yang-Hi; Kim, Gwang Hui Generalized Hyers-Ulam stability of the additive functional equation. (English) Zbl 1432.39024 Axioms 8, No. 2, Paper No. 76, 11 p. (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{G. H. Kim}, Axioms 8, No. 2, Paper No. 76, 11 p. (2019; Zbl 1432.39024) Full Text: DOI
Kumar, B. V. Senthil; Rassias, J. M.; Sabarinathan, S. Stabilities of various multiplicative inverse functional equations. (English) Zbl 1437.39012 Tbil. Math. J. 12, No. 4, 15-28 (2019). Reviewer: Choonkil Park (Seoul) MSC: 39B82 39B52 39B72 PDF BibTeX XML Cite \textit{B. V. S. Kumar} et al., Tbil. Math. J. 12, No. 4, 15--28 (2019; Zbl 1437.39012) Full Text: DOI Euclid
Shah, R.; Zada, A. Hyers-Ulam-Rassias stability of impulsive Volterra integral equation via a fixed point approach. (English) Zbl 07179153 J. Linear Topol. Algebra 8, No. 4, 219-227 (2019). MSC: 45D05 47H10 39B82 PDF BibTeX XML Cite \textit{R. Shah} and \textit{A. Zada}, J. Linear Topol. Algebra 8, No. 4, 219--227 (2019; Zbl 07179153) Full Text: Link
Sun, Wenlong; Jin, Yuanfeng; Park, Choonkil; Lu, Gang 3-variable double \(\rho \)-functional inequalities of drygas. (English) Zbl 1434.39023 J. Math. Inequal. 13, No. 4, 1235-1244 (2019). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 39B62 39B72 39B52 46B25 PDF BibTeX XML Cite \textit{W. Sun} et al., J. Math. Inequal. 13, No. 4, 1235--1244 (2019; Zbl 1434.39023) Full Text: DOI
Riaz, Usman; Zada, Akbar; Ali, Zeeshan; Ahmad, Manzoor; Xu, Jiafa; Fu, Zhengqing Analysis of nonlinear coupled systems of impulsive fractional differential equations with Hadamard derivatives. (English) Zbl 1435.34016 Math. Probl. Eng. 2019, Article ID 5093572, 20 p. (2019). MSC: 34A08 34B37 PDF BibTeX XML Cite \textit{U. Riaz} et al., Math. Probl. Eng. 2019, Article ID 5093572, 20 p. (2019; Zbl 1435.34016) Full Text: DOI
Shah, Syed Omar; Zada, Akbar The Ulam stability of non-linear Volterra integro-dynamic equations on time scales. (English) Zbl 1442.45008 Note Mat. 39, No. 2, 57-70 (2019). MSC: 45J05 45M10 26E70 PDF BibTeX XML Cite \textit{S. O. Shah} and \textit{A. Zada}, Note Mat. 39, No. 2, 57--70 (2019; Zbl 1442.45008) Full Text: DOI
Lee, Yang-Hi A fixed point approach to the stability of a quadratic-cubic-quartic functional equation. (Korean. English summary) Zbl 1429.39023 East Asian Math. J. 35, No. 5, 559-568 (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee}, East Asian Math. J. 35, No. 5, 559--568 (2019; Zbl 1429.39023) Full Text: DOI
Shah, Syed Omar; Zada, Akbar; Hamza, Alaa E. Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time scales. (English) Zbl 1432.34116 Qual. Theory Dyn. Syst. 18, No. 3, 825-840 (2019). MSC: 34N05 34K45 34K27 47N20 PDF BibTeX XML Cite \textit{S. O. Shah} et al., Qual. Theory Dyn. Syst. 18, No. 3, 825--840 (2019; Zbl 1432.34116) Full Text: DOI
Park, Choonkil Symmetric biderivations on Banach algebras. (English) Zbl 1428.39031 Indian J. Pure Appl. Math. 50, No. 2, 413-426 (2019). MSC: 39B52 39B82 46L57 PDF BibTeX XML Cite \textit{C. Park}, Indian J. Pure Appl. Math. 50, No. 2, 413--426 (2019; Zbl 1428.39031) Full Text: DOI
Shah, Syed Omar; Zada, Akbar Existence, uniqueness and stability of solution to mixed integral dynamic systems with instantaneous and noninstantaneous impulses on time scales. (English) Zbl 1428.34141 Appl. Math. Comput. 359, 202-213 (2019). MSC: 34N05 34K05 39B82 45J05 PDF BibTeX XML Cite \textit{S. O. Shah} and \textit{A. Zada}, Appl. Math. Comput. 359, 202--213 (2019; Zbl 1428.34141) Full Text: DOI
Ghobadipour, Norouz; Sepasian, Ali Reza On the stability of left \(\delta \)-centralizers on Banach Lie triple systems. (English) Zbl 07142378 Oper. Matrices 13, No. 3, 797-807 (2019). MSC: 17B40 16W25 PDF BibTeX XML Cite \textit{N. Ghobadipour} and \textit{A. R. Sepasian}, Oper. Matrices 13, No. 3, 797--807 (2019; Zbl 07142378) Full Text: DOI
Lee, Yang-Hi On the Hyers-Ulam-Rassias stability of a general quartic functional equation. (English) Zbl 1427.39016 East Asian Math. J. 35, No. 3, 351-356 (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee}, East Asian Math. J. 35, No. 3, 351--356 (2019; Zbl 1427.39016) Full Text: DOI
Lee, Yang-Hi On the stability of a general quadratic-cubic functional equation in non-Archimedean normed spaces. (English) Zbl 1427.39015 East Asian Math. J. 35, No. 3, 331-340 (2019). MSC: 39B82 39B22 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee}, East Asian Math. J. 35, No. 3, 331--340 (2019; Zbl 1427.39015) Full Text: DOI
Kang, Dognseung; Kim, Hoewoon The stability of generalized reciprocal-negative Fermat’s equations in quasi-\(\beta\)-normed spaces. (English) Zbl 1426.39026 Korean J. Math. 27, No. 1, 81-92 (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{D. Kang} and \textit{H. Kim}, Korean J. Math. 27, No. 1, 81--92 (2019; Zbl 1426.39026) Full Text: DOI
Park, Choonkil Additive \(s\)-functional inequalities and partial multipliers in Banach algebras. (English) Zbl 1426.39025 J. Math. Inequal. 13, No. 3, Article No. 13-60, 867-877 (2019). MSC: 39B52 46L05 39B62 43A22 39B82 PDF BibTeX XML Cite \textit{C. Park}, J. Math. Inequal. 13, No. 3, Article No. 13--60, 867--877 (2019; Zbl 1426.39025) Full Text: DOI
Boudaoui, A.; Caraballo, T.; Blouhi, T. Hyers-Ulam stability for coupled random fixed point theorems and applications to periodic boundary value random problems. (English) Zbl 07128013 Random Oper. Stoch. Equ. 27, No. 3, 143-152 (2019). MSC: 47H10 47H30 54H25 PDF BibTeX XML Cite \textit{A. Boudaoui} et al., Random Oper. Stoch. Equ. 27, No. 3, 143--152 (2019; Zbl 07128013) Full Text: DOI
Zada, Akbar; Waheed, Hira; Alzabut, Jehad; Wang, Xiaoming Existence and stability of impulsive coupled system of fractional integrodifferential equations. (English) Zbl 1439.45010 Demonstr. Math. 52, 296-335 (2019). MSC: 45J05 34A08 45M10 PDF BibTeX XML Cite \textit{A. Zada} et al., Demonstr. Math. 52, 296--335 (2019; Zbl 1439.45010) Full Text: DOI
Ahmad, Manzoor; Zada, Akbar; Alzabut, Jehad Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer-Hadamard type. (English) Zbl 1431.34004 Demonstr. Math. 52, 283-295 (2019). MSC: 34A08 34B15 34D10 47N20 PDF BibTeX XML Cite \textit{M. Ahmad} et al., Demonstr. Math. 52, 283--295 (2019; Zbl 1431.34004) Full Text: DOI
Ajebbar, Omar; Elqorachi, Elhoucien Solutions and stability of trigonometric functional equations on an amenable group with an involutive automorphism. (English) Zbl 1427.39012 Commun. Korean Math. Soc. 34, No. 1, 55-82 (2019). Reviewer: Henrik Stetkær (Aarhus) MSC: 39B32 39B52 39B82 PDF BibTeX XML Cite \textit{O. Ajebbar} and \textit{E. Elqorachi}, Commun. Korean Math. Soc. 34, No. 1, 55--82 (2019; Zbl 1427.39012) Full Text: DOI
Hwang, Inho; Park, Choonkil Bihom derivations in Banach algebras. (English) Zbl 1441.46034 J. Fixed Point Theory Appl. 21, No. 3, Paper No. 81, 14 p. (2019). MSC: 46H25 46H05 39B52 47B47 PDF BibTeX XML Cite \textit{I. Hwang} and \textit{C. Park}, J. Fixed Point Theory Appl. 21, No. 3, Paper No. 81, 14 p. (2019; Zbl 1441.46034) Full Text: DOI
Zada, Akbar; Riaz, Usman; Khan, Farhan Ullah Hyers-Ulam stability of impulsive integral equations. (English) Zbl 1436.45001 Boll. Unione Mat. Ital. 12, No. 3, 453-467 (2019). MSC: 45D05 45G10 45M10 PDF BibTeX XML Cite \textit{A. Zada} et al., Boll. Unione Mat. Ital. 12, No. 3, 453--467 (2019; Zbl 1436.45001) Full Text: DOI
EL-Fassi, Iz-iddine; Chahbi, Abdellatif; Kabbaj, Samir Baire category theorem and approximation of the Pexider quadratic functional equation on a set of Lebesgue measure zero. (English) Zbl 1420.39022 J. Anal. 27, No. 3, 697-707 (2019). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{I.-i. EL-Fassi} et al., J. Anal. 27, No. 3, 697--707 (2019; Zbl 1420.39022) Full Text: DOI
Anderson, Douglas R.; Onitsuka, Masakazu Best constant for Hyers-Ulam stability of second-order \(h\)-difference equations with constant coefficients. (English) Zbl 1433.39005 Result. Math. 74, No. 4, Paper No. 151, 16 p. (2019). Reviewer: Fengqin Zhang (Yuncheng) MSC: 39A30 39A10 PDF BibTeX XML Cite \textit{D. R. Anderson} and \textit{M. Onitsuka}, Result. Math. 74, No. 4, Paper No. 151, 16 p. (2019; Zbl 1433.39005) Full Text: DOI
Başcı, Yasemin; Öğrekçi, Süleyman; Mısır, Adil On Hyers-Ulam stability for fractional differential equations including the new Caputo-Fabrizio fractional derivative. (English) Zbl 1429.34008 Mediterr. J. Math. 16, No. 5, Paper No. 131, 14 p. (2019). MSC: 34A08 34D10 PDF BibTeX XML Cite \textit{Y. Başcı} et al., Mediterr. J. Math. 16, No. 5, Paper No. 131, 14 p. (2019; Zbl 1429.34008) Full Text: DOI
Shen, Yonghong; Li, Yongjin A general method for the Ulam stability of linear differential equations. (English) Zbl 1426.34070 Bull. Malays. Math. Sci. Soc. (2) 42, No. 6, 3187-3211 (2019). MSC: 34D10 34A30 PDF BibTeX XML Cite \textit{Y. Shen} and \textit{Y. Li}, Bull. Malays. Math. Sci. Soc. (2) 42, No. 6, 3187--3211 (2019; Zbl 1426.34070) Full Text: DOI
Ponpetch, Kanet; Laohakosol, Vichian; Mavecha, Sukrawan A system of functional equations satisfied by components of a quadratic function and its stability. (English) Zbl 1420.39021 Bull. Aust. Math. Soc. 100, No. 2, 304-316 (2019). MSC: 39B72 39B82 PDF BibTeX XML Cite \textit{K. Ponpetch} et al., Bull. Aust. Math. Soc. 100, No. 2, 304--316 (2019; Zbl 1420.39021) Full Text: DOI
Vivek, D.; Elsayed, E. M.; Kanagarajan, K. Theory and analysis of partial differential equations with a \(\psi \)-Caputo fractional derivative. (English) Zbl 1423.35417 Rocky Mt. J. Math. 49, No. 4, 1355-1370 (2019). MSC: 35R11 PDF BibTeX XML Cite \textit{D. Vivek} et al., Rocky Mt. J. Math. 49, No. 4, 1355--1370 (2019; Zbl 1423.35417) Full Text: DOI Euclid