×

Numerical-analytical model for transient dynamics of elastic-plastic plate under eccentric low-velocity impact. (English) Zbl 1465.74132

Summary: The aim of this study is to present an efficient model for the analysis of complicated nonlinear transient dynamics of an elastic-plastic plate subjected to a transversely eccentric low-velocity impact. A mixed numerical-analytical model is presented to predict the transient dynamic behaviours consisting of either plate impact responses or wave propagations induced by the impact in a plate with an arbitrary shape and support. This hybrid approach has been validated by comparison with results of laboratory tests performed on an elastic-perfectly plastic narrow plate eccentrically struck by an elastic sphere, and results of a three-dimensional finite element (FE) analysis for an elastic-perfectly plastic simply-supported rectangular plate eccentrically struck by an elastic sphere. The advantages of this hybrid approach are in the simplification of local contact force formulation, computational efficiency over the FE model, and convenient application to parametric study for eccentric impact behaviour. The hybrid approach can provide accurate predictions of the plate impact responses and plate wave propagations.

MSC:

74M20 Impact in solid mechanics
74K20 Plates
74M15 Contact in solid mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74S05 Finite element methods applied to problems in solid mechanics

Software:

LS-DYNA
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Shariyat, M., Automotive Body: Design and Analysis (2006), KNT University: KNT University Tehran
[2] Goldsmith, W.; Frasier, J., Impact: The Theory and Physical Behavior of Colliding Solids (2001), Dover Pub. Inc: Dover Pub. Inc New York
[3] Christoforou, A. P.; Yigit, A. S., Effect of flexibility on low velocity impact response, J. Sound Vibr, 217, 563-578 (1998)
[4] Laursen, T. A., Computational Contact and Impact Mechanics (2003), Springer Berlin Heidelberg: Springer Berlin Heidelberg New York
[5] Kikuchi, N.; Oden, J. T., Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Element Methods (1988), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadephia · Zbl 0685.73002
[6] Brake, M., An analytical elastic-perfectly plastic contact model, Int. J. Solids Struct., 49, 3129-3141 (2012)
[7] Brake, M., An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts, Int. J. Solids Struct., 62, 104-123 (2015)
[8] Jackson, R. L.; Green, I., A finite element study of elasto-plastic hemispherical contact against a rigid flat, ASME J. Tribol., 127, 343-354 (2005)
[9] Johnson, K. L., Contact Mechanics (1987), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0599.73108
[10] Stronge, W. J., Impact Mechanics (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1412.74002
[11] Ye, N.; Komvopoulos, K., Indentation analysis of elastic-plastic homogeneous and layered media: criteria for determining the real material hardness, ASME J. Tribol., 125, 685-691 (2003)
[12] Alves, J.; Peixinho, N.; da Silva, M. T.; Flores, P.; Lankarani, H. M., A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids, Mech. Mach. Theory, 85, 172-188 (2015)
[13] Gheadnia, H.; Cermik, O.; Marghitu, D. B., Experimental and theoretical analysis of the elasto-plastic oblique impact of a rod with a flat, Int. J. Impact Eng., 86, 307-317 (2015)
[14] Zhang, Y.; Sharf, I., Validation of nonlinear viscoelastic contact force models for low speed impact, J. Appl. Mech., 76, 05100201-05100212 (2009)
[15] Abrate, S., Modeling of impacts on composite structures, Compos. Struct., 51, 129-138 (2001)
[16] Shivakumar, K.; Elber, W.; Illg, W., Prediction of impact force and duration due to low-velocity impact on circular composite laminates, ASME J. Appl. Mech., 52, 674-680 (1985) · Zbl 0562.73059
[17] Hertz, H., Über die Berührung fester elastischer Körper, J. f. reine u. angew. Math., 92, 156-171 (1882) · JFM 14.0807.01
[18] Bucinell, R. B.; Nuismer, R. J.; Koury, J. L., Response of composite plates to quasi-static impact events, Composite Materials: Fatigue and Fracture, Third Volume (1991), ASTM Int.: ASTM Int. West Conshohocken, Pennsylvania
[19] Shivaswamy, S.; Lankarani, H., Impact analysis of plates using quasi-static approach, J. Mech. Des., 119, 376-381 (1997)
[20] Karas, K., Platten unter seitlichem Stoss, Arch. Appl. Mech., 10, 237-250 (1939) · Zbl 0022.41603
[21] Chao, C. C.; Tu, C. Y., Three-dimensional contact dynamics of laminated plates: Part 1. Normal impact, Compos. Part B: Eng., 30, 9-22 (1999)
[22] Heitzer, J., Dynamic interaction of a plate and an impactor, Comput. Struct., 60, 837-848 (1996) · Zbl 0920.73145
[23] Dobyns, A., Analysis of simply-supported orthotropic plates subject to static and dynamic loads, AIAA J., 19, 642-650 (1981) · Zbl 0465.73080
[24] Shariyat, M.; Farzan, F., Nonlinear eccentric low-velocity impact analysis of a highly prestressed FGM rectangular plate, using a refined contact law, Arch. Appl. Mech., 83, 623-641 (2013) · Zbl 1293.74336
[25] Chen, P. C.; Ramkumar, R. L., Static and dynamic analysis of clamped orthotropic plates using Lagrangian multiplier technique, AIAA J., 25, 316-323 (1987) · Zbl 0615.73071
[26] Doyle, J. F., Wave Propagation in Structure: An FFT-based Spectral Analysis Methodology (1989), Springer-Verlag: Springer-Verlag New York · Zbl 0715.73022
[27] Olsson, R., Impact response of orthotropic composite plates predicted from a one-parameter differential equation, AIAA J., 30, 1587-1596 (1992) · Zbl 0825.73112
[28] Christoforou, A. P.; Yigit, A. S.; Majeed, M., Low-velocity impact response of structures with local plastic deformation: characterization and scaling, J. Comput. Nonlinear Dyn., 8, 01101201-01101210 (2013)
[29] Yigit, A. S.; Christoforou, A. P., Limits of asymptotic solutions in low-velocity impact of composite plates, Compos. Struct., 81, 568-574 (2007)
[30] Yigit, A. S.; Christoforou, A. P.; Majeed, M. A., A nonlinear visco-elastoplastic impact model and the coefficient of restitution, Nonlinear Dyn., 66, 509-521 (2011)
[31] Mars, J.; Wali, M.; Jarraya, A.; Dammak, F.; Dhiab, A., Finite element implementation of an orthotropic plasticity model for sheet metal in low velocity impact simulations, Thin Wall. Struct., 89, 93-100 (2015)
[32] Nikbakht, A.; Sadighi, M.; Arezoodar, A. F.; Zucchelli, A., Elastic – plastic frictionless indentation analysis of a functionally graded vitreous enameled steel plate by a rigid spherical indenter, Mat. Sci. Eng. A-Struct., 564, 242-254 (2013)
[33] Singh, H.; Mahajan, P., Modeling damage induced plasticity for low velocity impact simulation of three dimensional fiber reinforced composite, Compos. Struct., 131, 290-303 (2015)
[34] Mohotti, D.; Ngo, T.; Raman, S. N.; Ali, M.; Mendis, P., Plastic deformation of polyurea coated composite aluminium plates subjected to low velocity impact, Mater. Des., 56, 696-713 (2014)
[35] Minamoto, H.; Seifried, R.; Eberhard, P.; Kawamura, S., Analysis of repeated impacts on a steel rod with visco-plastic material behavior, Eur. J. Mech. A/Solids, 30, 336-344 (2011) · Zbl 1278.74134
[36] Pashah, S.; Massenzio, M.; Jacquelin, E., Prediction of structural response for low velocity impact, Int. J. Impact Eng., 35, 119-132 (2008) · Zbl 1198.70007
[37] Shen, Y.; Yin, X., Analysis of geometric dispersion effect of impact-induced transient waves in composite rod using dynamic substructure method, Appl. Math. Model., 40, 1972-1988 (2016)
[38] Shen, Y. N.; Yin, X. C., Dynamic substructure analysis of stress waves generated by impacts on non-uniform rod structures, Mech. Mach. Theory, 74, 154-172 (2014)
[39] Hurty, W. C., Dynamic analysis of structural systems using component modes, AIAA J., 3, 678-685 (1965)
[40] Craig, R. R., Coupling of substructures for dynamic analyses, AIAA J., 6, 1313-1319 (1968) · Zbl 0159.56202
[41] de Klerk, D.; Rixen, D. J.; Voormeeren, S. N., General framework for dynamic substructuring: history, review and classification of techniques, AIAA J., 46, 1169-1181 (2008)
[42] Wenneker, F., Component Mode Synthesis for Geometrically Nonlinear Structures (2013), Delft University of Technology: Delft University of Technology Delft
[43] Hurty, W. C., Vibrations of structural systems by component mode synthesis, J. Eng. Mech. Div. Proc. Am. Soc. Civil Eng., 86, 51-69 (1960)
[44] Leung, A., Dynamic substructure method for elastic fractal structures, Comput. Struct., 89, 302-315 (2011)
[45] Weng, S.; Zhu, A.-Z.; Zhu, H.-P.; Xia, Y.; Mao, L.; Li, P.-H., Dynamic condensation approach to the calculation of eigensensitivity, Comput. Struct., 132, 55-64 (2014)
[46] Wu, S. C.; Haug, E. J., A substructure technique for dynamics of flexible mechanical systems with contact-impact, J. Mech. Des., 112, 390-398 (1990)
[47] Guo, A. P.; Batzer, S., Substructure analysis of a flexible system contact-impact event, J. Vib. Acoust., 126, 126-131 (2004)
[48] Shen, Y. N.; Yin, X. C., A dynamic substructure technique for the transient dynamics of non-homogeneous flexible bars with impact, Engng. Mech., 25, 42-47 (2008)
[49] Shen, Y. N.; Yin, X. C., Dynamic substructure model for multiple impact responses of micro/nano piezoelectric precision drive system, Sci. China Ser. E-Tech. Sci., 52, 622-633 (2009) · Zbl 1422.74080
[50] Qian, P. B.; Yin, X. C.; Shen, Y. N.; Yang, J., Dynamic substructure method for propagation of elastic-plastic wave induced by impact, Chin. J. Theor. Appl. Mech., 44, 184-188 (2012)
[51] Palazotto, A. N.; Herup, E. J.; Gummadi, L. N.B., Finite element analysis of low-velocity impact on composite sandwich plates, Compos. Struct., 49, 209-227 (2000)
[52] Goo, N.; Kim, S., Dynamic contact analysis of laminated composite plates under low-velocity impact, AIAA J., 35, 1518-1521 (1997) · Zbl 0899.73083
[53] Her, S. C.; Liang, Y. C., The finite element analysis of composite laminates and shell structures subjected to low velocity impact, Compos. Struct., 66, 277-285 (2004)
[54] Heimbs, S.; Heller, S.; Middendorf, P.; Hähnel, F.; Weiße, J., Low velocity impact on CFRP plates with compressive preload: test and modelling, Int. J. Impact Eng., 36, 1182-1193 (2009)
[55] Shariyat, M.; Hosseini, S., Accurate eccentric impact analysis of the preloaded SMA composite plates, based on a novel mixed-order hyperbolic global-local theory, Compos. Struct., 124, 140-151 (2015)
[56] Shariyat, M.; Nasab, F. F., Eccentric low-velocity impact analysis of transversely graded plates with Winkler-type elastic foundations and fully or partially supported edges, Thin Wall. Struct., 84, 112-122 (2014)
[57] Shariyat, M.; Roshanfar, M., A new analytical solution and novel energy formulations for non-linear eccentric impact analysis of composite multi-layer/sandwich plates resting on point supports, Thin Wall. Struct., 127, 157-168 (2018)
[58] Lan, J.; Li, G., A multiscale component mode synthesis approach for dynamic analysis of nanostructures, Int. J. Numer. Methods Eng., 92, 79-98 (2012) · Zbl 1352.74222
[59] Patil, D.; Fred Higgs, I. C., Experimental investigations on the coefficient of restitution for sphere – thin plate elastoplastic impact, ASME J. Tribol., 140, 01140601-01140613 (2017)
[60] Wang, H.; Yin, X. C.; Qi, X. L.; Deng, Q. M.; Yu, B.; Hao, Q. M., Experimental and theoretical analysis of the elastic-plastic normal repeated impacts of a sphere on a beam, Int. J. Solids Struct., 109, 131-142 (2017)
[61] Dong, X. Y.; Yin, X. C.; Deng, Q. M.; Yu, B.; Wang, H.; Weng, P. P.; Chen, C. Q.; Yuan, H., Local contact behavior between elastic and elastic-plastic bodies, Int. J. Solids Struct., 150, 22-39 (2018)
[62] Craig, R. R., Substructure methods in vibration, J. Mech. Des., 117, 207-213 (1995)
[63] Wriggers, P.; Vu Van, T.; Stein, E., Finite element formulation of large deformation impact-contact problems with friction, Comput. Struct., 37, 319-331 (1990) · Zbl 0727.73080
[64] Hughes, T.; Liu, W., Implicit-explicit finite elements in transient analysis: stability theory, J. Appl. Mech., 45, 371-374 (1978) · Zbl 0392.73076
[65] Qi, X.; Yin, X., Experimental studying multi-impact phenomena exhibited during the collision of a sphere onto a steel beam, Adv. Mech. Eng., 8, 1-16 (2016)
[66] Caccialupi, A., Systems Development For High Temperature, High Strain Rate Material Testing of Hard Steels for Plasticity Behavior Modeling (2003), Georgia Institute of Technology: Georgia Institute of Technology Atlanta
[67] Zhang, L.; Yin, X.; Yang, J.; Wang, H.; Deng, Q.; Yu, B.; Hao, Q.; Ding, H.; Qi, X.; Jin, T.; Dong, X., Transient impact response analysis of an elastic – plastic beam, Appl. Math. Model., 55, 616-636 (2018)
[68] Hallquist, J., LS-DYNA Keyword User’s Manual (2003), Livermore Software Technology Corporation: Livermore Software Technology Corporation California, Version: 970
[69] Patil, D.; Fred Higgs, I. C., Critical plate thickness for energy dissipation during sphere – plate elastoplastic impact involving flexural vibrations, ASME J. Tribol., 139, 04110401-04110409 (2017)
[70] Chan, S.; Fawaz, Z.; Behdinan, K.; Amid, R., Ballistic limit prediction using a numerical model with progressive damage capability, Compos. Struct., 77, 466-474 (2007)
[71] Mulhearn, T., The deformation of metals by Vickers-type pyramidal indenters, J. Mech. Phys. Solids, 7, 85-88 (1959)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.