×

Stability analysis on an economic epidemiological model with vaccination. (English) Zbl 1366.92116

Summary: In this paper, an economic epidemiological model with vaccination is studied. The stability of the endemic steady-state is analyzed and some bifurcation properties of the system are investigated. It is established that the system exhibits saddle-point and period-doubling bifurcations when adult susceptible individuals are vaccinated. Furthermore, it is shown that susceptible individuals also have the tendency of opting for more number of contacts even if the vaccine is inefficacious and thus causes the disease endemic to increase in the long run. Results from sensitivity analysis with specific disease parameters are also presented. Finally, it is shown that the qualitative behaviour of the system is affected by contact levels.

MSC:

92D30 Epidemiology
91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Andrews, The impacts of simultaneous disease intervention decisions on epidemic outcomes,, Journal of Theoretical Biology, 395, 1 (2016) · Zbl 1343.92456 · doi:10.1016/j.jtbi.2016.01.027
[2] M. Andrews, Disease interventions can interfere with one another through disease-behaviour interactions,, PLOS Computational Biology, 11 (2015) · doi:10.1371/journal.pcbi.1004291
[3] D. Aadland, <em>Syphilis Cycles</em>,, University Library of Munich (8722) · Zbl 1201.91145
[4] D. Aadland, Syphilis cycles,, The B.E. Journal of Economic Analysis and Policy, 14, 297 (2013)
[5] D. Aadland, <em>The Equilibrium Dynamics of Economic Epidemiology</em>,, (2011) <a href= (2011)
[6] D. Aadland, <em>The Dynamic of Economics Epidemiology Equilibria</em>,, Association of Environmental and Resource Economists 2nd Annual Summer Conference (2012)
[7] D. Aadland, <em>The Equilibrium Dynamics of Economic Epidemiology</em>,, Vanderbilt University Department of Economics Working Paper Series 13-00003, 13 (2013)
[8] A. Ahituv, Is aids self-limiting? evidence on the prevalence elasticity of the demand for condoms,, Journal of Human Resources, 31, 869 (1996)
[9] J. Arino, An epidemiology model that includes a leaky vaccine with a general waning function,, Discrete and Continuous Dynamical Systems Series B, 4, 479 (2004) · Zbl 1040.92035 · doi:10.3934/dcdsb.2004.4.479
[10] M. C. Auld, Choices, beliefs, and infectious disease dynamics,, Journal of Health Economics, 22, 361 (2003) · doi:10.1016/S0167-6296(02)00103-0
[11] L. J. S. Allen, Some discrete-time SI, SIR, and SIS epidemic models,, Math. Biosci., 124, 83 (1994) · Zbl 0807.92022 · doi:10.1016/0025-5564(94)90025-6
[12] J. L. Aron, Seasonality and period-doubling bifurcations in an epidemic model,, Journal of Theoretical Biology, 110, 665 (1984) · doi:10.1016/S0022-5193(84)80150-2
[13] W. S. Avusuglo, Stability analysis on an economic epidemiology model on syphilis,, Communications in Applied Analysis, 18, 59 (2014) · Zbl 1346.92066
[14] M. Aguiar, Epidemiology of dengue fever: A model with temporary cross-immunity and possible secondary infection shows bifurcations and chaotic behaviour in wide parameter regions,, Math. Model. Nat. Phenom., 3, 48 (2008) · Zbl 1337.92126 · doi:10.1051/mmnp:2008070
[15] A. M. Bate, Complex dynamics in an eco-epidemiological model,, Bulletin of Mathematical Biology, 75, 2059 (2013) · Zbl 1310.92050 · doi:10.1007/s11538-013-9880-z
[16] C. T. Bauch, Social factors in epidemiology,, Science, 342, 47 (2013) · doi:10.1126/science.1244492
[17] C. T. Bauch, Disease dynamics and costly punishment can foster socially imposed monogamy,, Nature Communications, 7 (2016) · doi:10.1038/ncomms11219
[18] S. M. Blower, Prophylactic vaccines, risk behaviour change, and the probability of eradicating HIV in San Francisco,, Science, 265, 1451 (1994)
[19] F. Brauer, Models for the spread of universally fatal diseases,, Journal of Mathematical Biology, 28, 451 (1990) · Zbl 0718.92021 · doi:10.1007/BF00178328
[20] F. Brauer, Epidemic models in populations of varying size,, Mathematical Approaches to Problems in Resource Management and Epidemiology, 81, 109 (1989) · doi:10.1007/978-3-642-46693-9_9
[21] R. O. Baratta, Measles (rubeola) in previously immunized children,, Pediatrics, 46, 397 (1970)
[22] M. P. Do Carmo, <em>Differential Forms and Applications</em>,, Translated from the 1971 Portuguese original (1971) · doi:10.1007/978-3-642-57951-6
[23] E. P. Fenichel, Adaptive human behavior in epidemiological models,, PNAS, 108, 6306 (2011) · doi:10.1073/pnas.1011250108
[24] M. O. Fred, Mathematical Modeling on the Control of Measles by Vaccination: Case Study of KISII County, Kenya,, The SIJ Transactions on Computer Science Engineering and its Applications (CSEA), 2, 61 (2014)
[25] M. Grossman, On the concept of health capital and the demand for health,, Journal of Political Economy, 80, 223 (1972) · doi:10.1086/259880
[26] Z. Hu, Analysis of SIR epidemic models with nonlinear incidence rate and treatment,, Mathematical Biosciences, 238, 12 (2012) · Zbl 1250.92031 · doi:10.1016/j.mbs.2012.03.010
[27] Kenya National Bureau of Statistics. 2013., <em>Kisii County Multiple Indicator Cluster Survey 2011</em>,, Final Report. Nairobi
[28] L. Marcos, Multiparametric bifurcations for a model in epidemiology,, J. Mathematical Biology, 35, 21 (1996) · Zbl 0868.92024 · doi:10.1007/s002850050040
[29] M. Mark, <em>Mathematical Modelling</em>,, (4th Edition), 978 (2012)
[30] R. M. May, Nonlinear phenomena in ecology and epidemiology,, Annals of the New York Academy of Sciences, 357, 267 (1980) · Zbl 0477.92015
[31] R. E. Mickens, Analysis of a discrete-time model for periodic diseases with pulse vaccination,, Journal of Difference Equations and Applications, 9, 541 (2003) · Zbl 1043.39008 · doi:10.1080/1023619031000078306
[32] Z. Mukandavire, Mathematical analysis of a model for HIV-malaria co-infection,, Mathematical Biosciences and Engineering, 6, 333 (2009) · Zbl 1167.92020 · doi:10.3934/mbe.2009.6.333
[33] A. M. Niger, Mathematical analysis of the role of repeated exposure on malaria transmission dynamics,, Differential Equations and Dynamical Systems, 16, 251 (2008) · Zbl 1181.34056 · doi:10.1007/s12591-008-0015-1
[34] T. Oraby, The influence of social norms on dynamics of paediatric vaccinating behaviour,, Proc. R. Soc. B., 281 (2014) · doi:10.1098/rspb.2013.3172
[35] T. Philipson, <em>Private Choices and Public Health: An Economic Interpretation of the AIDS Epidemic</em>,, Harvard University (1993)
[36] C. Perrings, Merging economics and epidemiology to improve the prediction and management of infectious disease,, EcoHealth, 11, 464 (2014) · doi:10.1007/s10393-014-0963-6
[37] T. Philipson, Economic epidemiology and infectious diseases,, Handbook of Health Economics, 1, 1761 (2000) · doi:10.3386/w7037
[38] S. A. Plotkin, <em>Vaccines</em>,, 5th ed. (2008) (2008)
[39] V. F. Reyna, How people make decisions that involve risk,, American Psychological Society, 13, 60 (2004) · doi:10.1111/j.0963-7214.2004.00275.x
[40] L. W. Rauh, Measles immunization with killed virus vaccine. Serum antibody titers and experience with exposure to measles epidemic,, Bulletin of the World Health Organization, 78, 226 (2000)
[41] E. Shim, Medical decision making,, Decision Making with Regard to Antiviral Intervention during an Influenza Pandemic, 30 (2010) · doi:10.1177/0272989X10374112
[42] S. Tully, Sexual behaviour, risk perception, and HIV transmission can respond to HIV antiviral drugs and vaccines through multiple pathways,, Scientific Reports, 5 (2015)
[43] Z. Wang, Coupled disease-behavior dynamics on complex networks: A review,, Physics of Life Reviews, 15, 1 (2015) · doi:10.1016/j.plrev.2015.07.006
[44] W. Wang, Backward bifurcation of an epidemic model with treatment,, Math. Biosci., 201, 58 (2006) · Zbl 1093.92054 · doi:10.1016/j.mbs.2005.12.022
[45] Z. Yicang, Stability of periodic solutions for an SIS model with pulse vaccination,, Mathematical and Computer Modelling, 38, 299 (2003) · Zbl 1045.92042 · doi:10.1016/S0895-7177(03)90088-4
[46] M. T. Caserta, <a href=“http://www.merckmanuals.com/professional/pediatrics/miscellaneous-viral-infections-in-infants-and-children/measles” target=“_blank”>http://www.merckmanuals.com/professional/pediatrics/miscellaneous-viral-infections-in-infants-and-children/measles</a>,, Merck Manual Professional. Merck Sharp and Dohme Corp. Retrieved 15 January 2017. (2017)
[47] Government of Canada, <a href=“http://healthycanadians.gc.ca/publications/healthy-living-vie-saine/4-canadian-immunization-guide-canadien-immunisation/index-eng.php?page=12” target=“_blank”>http://healthycanadians.gc.ca/publications/healthy-living-vie-saine/4-canadian-immunization-guide-canadien-immunisation/index-eng.php?page=12</a>, (accessed January 12 (2017)
[48] <a href=, Government of Saskatchewan,, Retrieved 15 January 2017. (2017)
[49] <a href=, November 2016,, Retrieved 15 January 2017. (2017)
[50] <a, href=
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.