×

Thermally induced nonlinear dynamic analysis of temperature-dependent functionally graded flexoelectric nanobeams based on nonlocal simplified strain gradient elasticity theory. (English) Zbl 1475.74029

Summary: In this work, thermally induced dynamic behaviors of functionally graded flexoelectric nanobeams (FGFNs) are analyzed theoretically while considering the neutral surface concept and the von Karman nonlinearity induced by thermal environment. The temperature field is assumed to vary only in the thickness direction by solving a simple steady state heat transfer equation and to be constant in the plane of the beam. The temperature-dependent material properties of FGFNs are assumed to vary continuously throughout the thickness according to a power-law form. For such FGFNs, the nonlocal simplified strain gradient elasticity theory to capture the effect of size-dependent and, the higher order shear deformation beam theory to account for rotary inertia and transverse shear strains are adopted to formulate the governing equations and associated boundary conditions, which are solved by using a two-step perturbation method. In the numerical part, comparison study is also performed to verify the present theoretical model and the parametric analysis is systematically studied. It is also found that the thermally induced bending amplitude, nonlinear frequency and frequency ratio depend enormously on the material distribution profile, the flexoelectricity, the size-dependent effect and the imposed temperature field.

MSC:

74F05 Thermal effects in solid mechanics
74F15 Electromagnetic effects in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74M25 Micromechanics of solids
74E05 Inhomogeneity in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Altan, B.; Aifantis, E., On some aspects in the special theory of gradient elasticity, J. Mech. Behav. Mater., 8, 3, 231-282 (1997)
[2] Ansari, R.; Gholami, R.; Shojaei, M. F.; Mohammadi, V.; Sahmani, S., Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory, Compos. Struct., 100, 385-397 (2013)
[3] Arefi, M.; Zenkour, A. M., Free vibration analysis of a three-layered microbeam based on strain gradient theory and three-unknown shear and normal deformation theory, Steel Compos. Struct., 26, 4, 421-437 (2018)
[4] Arefi, M.; Zamani, M. H.; Kiani, M., Size-dependent free vibration analysis of three-layered exponentially graded nanoplate with piezomagnetic face-sheets resting on Pasternak’s foundation, J. Intell. Mater. Syst. Struct., 29, 5, 774-786 (2018)
[5] Arefi, M.; Kiani, M.; Zamani, M. H., Nonlocal strain gradient theory for the magneto-electro-elastic vibration response of a porous FG-core sandwich nanoplate with piezomagnetic face sheets resting on an elastic foundation, J. Sandw. Struct. Mater., 1-29 (2018), 0(0)
[6] Arefi, M.; Bidgoli, E. M.R.; Dimitri, R.; Bacciocchi, M.; Tornabene, F., Application of sinusoidal shear deformation theory and physical neutral surface to analysis of functionally graded piezoelectric plate, Compos. B Eng., 151, 35-50 (2018)
[7] Arefi, M.; Pourjamshidian, M.; Arani, A. G.; Rabczuk, T., Influence of flexoelectric, small-scale, surface and residual stress on the nonlinear vibration of sigmoid, exponential and power-law FG Timoshenko nano-beams, J. Low Freq. Noise Vib. Act. Contr., 38, 1, 122-142 (2019)
[8] Arefi, M.; Bidgoli, E. M.R.; Zenkour, A. M., Free vibration analysis of a sandwich nano-plate including FG core and piezoelectric face-sheets by considering neutral surface, Mech. Adv. Mater. Struct., 26, 9, 741-752 (2019)
[9] Aydogdu, M., A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration, Physica E, 41, 9, 1651-1655 (2009)
[10] Chen, S. Y.; Niu, X.; Guo, F. L., Thermoelastic damping in micromechanical resonators operating as mass sensors, Eur. J. Mech. Solid., 71, 165-178 (2018) · Zbl 1406.74505
[11] Chu, L.; Ju, C.; Dui, G., Flexoelectric effect on the bending and vibration responses of functionally graded piezoelectric nanobeams based on general modified strain gradient theory, Compos. Struct., 186, 39-49 (2018)
[12] Chu, L.; Li, Y.; Dui, G., Size-dependent electromechanical coupling in functionally graded flexoelectric nanocylinders, Acta Mech., 230, 9, 3071-3086 (2019) · Zbl 1428.74175
[13] Chu, L.; Li, Y.; Dui, G., Nonlinear analysis of functionally graded flexoelectric nanoscale energy harvesters, Int. J. Mech. Sci., 167, 105282 (2020)
[14] Deng, Q.; Kammoun, M.; Erturk, A.; Sharma, P., Nanoscale flexoelectric energy harvesting, Int. J. Solid Struct., 51, 18, 3218-3225 (2014)
[15] Ding, J.; Chu, L.; Xin, L.; Dui, G., Nonlinear vibration analysis of functionally graded beams considering the influences of the rotary inertia of the cross section and neutral surface position, Mech. Base. Des. Struct. Mach., 46, 2, 225-237 (2018)
[16] Ebrahimi, F.; Barati, M. R., Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory, Compos. Struct., 159, 433-444 (2017)
[17] Ebrahimi, F.; Barati, M. R., Thermo-mechanical vibration analysis of nonlocal flexoelectric/piezoelectric beams incorporating surface effects, Struct. Eng. Mech., 65, 4, 435-445 (2018)
[18] Ebrahimi, F.; Jafari, A., A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities, J. Eng., 2016, 9561504 (2016)
[19] Eltaher, M. A.; Emam, S. A.; Mahmoud, F. F., Free vibration analysis of functionally graded size-dependent nanobeams, Appl. Math. Comput., 218, 14, 7406-7420 (2012) · Zbl 1405.74019
[20] Eringen, A. C., Linear theory of nonlocal elasticity and dispersion of plane waves, Int. J. Eng. Sci., 10, 425-435 (1972) · Zbl 0241.73005
[21] Eringen, A. C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., 54, 4703-4710 (1983)
[22] Fleck, H. A.; Hutchinson, J. W., A phenomenological theory for strain gradient effects in plasticity, J. Mech. Phys. Solid., 41, 1825-1857 (1993) · Zbl 0791.73029
[23] Fu, Y.; Wang, J.; Mao, Y., Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment, Appl. Math. Model., 36, 9, 4324-4340 (2012) · Zbl 1252.74013
[24] Gao, Y.; Xiao, W.; Zhu, H., Nonlinear vibration analysis of different types of functionally graded beams using nonlocal strain gradient theory and a two-step perturbation method, Eur. Phys. J. Plus, 134, 1, 23 (2019)
[25] Hu, S.; Shen, S., Electric field gradient theory with surface effect for nano-dielectrics, Comput. Mater. Continua (CMC), 13, 63 (2009)
[26] Ke, L. L.; Yang, J.; Kitipornchai, S., An analytical study on the nonlinear vibration of functionally graded beams, Meccanica, 45, 6, 743-752 (2010) · Zbl 1258.74104
[27] Kim, Y. W., Temperature dependent vibration analysis of functionally graded rectangular plates, J. Sound Vib., 284, 3-5, 531-549 (2005)
[28] Koizumi, M., The concept of FGM, Ceram. Trans., 34, 3-10 (1993)
[29] Kumar, Anuruddh; Kiran, Raj; Kumar, Rajeev, Flexoelectric effect in functionally graded materials: A numericalstudy, The European Physical Journal Plus, 133, Article 141 pp. (2018)
[30] Lam, D.; Yang, F.; Chong, A.; Wang, J.; Tong, P., Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solid., 51, 1477-1508 (2003) · Zbl 1077.74517
[31] Li, L.; Hu, Y., Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material, Int. J. Eng. Sci., 107, 77-97 (2016) · Zbl 1423.74496
[32] Li, S. R.; Zhang, J. H.; Zhao, Y. G., Thermal post-buckling of functionally graded material Timoshenko beams, Appl. Math. Mech., 27, 6, 803-810 (2006) · Zbl 1178.74063
[33] Li, A.; Zhou, S.; Zhou, S.; Wang, B., A size-dependent bilayered microbeam model based on strain gradient elasticity theory, Compos. Struct., 108, 259-266 (2014)
[34] Li, X.; Li, L.; Hu, Y.; Ding, Z.; Deng, W., Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory, Compos. Struct., 165, 250-265 (2017)
[35] Li, X.; Li, L.; Hu, Y.; Deng, Z.; Deng, W., Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory, Compos. Struct., 165, 250-265 (2017)
[36] Liang, Xu; Shen, Shengping, Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity, International Journal of Applied Mechanics, 5, 2, 1350015 (2013)
[37] Lim, C. W.; Zhang, G.; Reddy, J. N., A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, J. Mech. Phys. Solid., 78, 298-313 (2015) · Zbl 1349.74016
[38] Liu, C.; Hu, S.; Shen, S., Effect of flexoelectricity on electrostatic potential in a bent piezoelectric nanowire, Smart Mater. Struct., 21, 11, 115024 (2012)
[39] Livshits, A. I.; Jasulaneca, L.; Kosmaca, J.; Meija, R.; Holmes, J. D.; Erts, D., Extra tension at electrode-nanowire adhesive contacts in nano-electromechanical devices, Eur. J. Mech. Solid., 66, 412-422 (2017) · Zbl 1406.74220
[40] Majdoub, M. S.; Sharma, P.; Cagin, T., Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect, Phys. Rev. B, 77, 12, 125424 (2008)
[41] Majdoub, M. S.; Sharma, P.; Çağin, T., Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures, Phys. Rev. B, 78, 12, 121407 (2008)
[42] Maranganti, R.; Sharma, N. D.; Sharma, P., Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: green’s function solutions and embedded inclusions, Phys. Rev. B, 74, 1, Article 014110 pp. (2006)
[43] Marzbanrad, J.; Ebrahimi-Nejad, S.; Shaghaghi, G.; Boreiry, M., Nonlinear vibration analysis of piezoelectric functionally graded nanobeam exposed to combined hygro-magneto-electro-thermo-mechanical loading, Mater. Res. Express, 5, 7, Article 075022 pp. (2018)
[44] Mbarki, R.; Baccam, N.; Dayal, K.; Sharma, P., Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling, Appl. Phys. Lett., 104, 12, 122904 (2014)
[45] Mindlin, R., Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 52-78 (1964) · Zbl 0119.40302
[46] Mindlin, R., Second gradient of strain and surface-tension in linear elasticity, Int. J. Solid Struct., 1, 414-438 (1965)
[47] Najafizadeh, M. M.; Heydari, H. R., Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory, Eur. J. Mech. Solid., 23, 6, 1085-1100 (2004) · Zbl 1063.74042
[48] Nguyen, T. D.; Mao, S.; Yeh, Y. W.; Purohit, P. K.; McAlpine, M. C., Nanoscale flexoelectricity, Adv. Mater., 25, 7, 946-974 (2013)
[49] Nguyen, B. H.; Nanthakumar, S. S.; Zhuang, X.; Wriggers, P.; Jiang, X.; Rabczuk, T., Dynamic flexoelectric effect on piezoelectric nanostructures, Eur. J. Mech. Solid., 71, 404-409 (2018) · Zbl 1406.74224
[50] Noda, N., Thermal stresses in functionally graded materials, J. Therm. Stresses, 22, 4-5, 477-512 (1999)
[51] Praveen, G. N.; Reddy, J. N., Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates, Int. J. Solid Struct., 35, 33, 4457-4476 (1998) · Zbl 0930.74037
[52] Qi, L., Energy harvesting properties of the functionally graded flexoelectric microbeam energy harvesters, Energy, 171, 721-730 (2019)
[53] Reddy, J. N.; Chin, C. D., Thermomechanical analysis of functionally graded cylinders and plates, J. Therm. Stresses, 21, 6, 593-626 (1998)
[54] Reddy, J. N.; El-Borgi, S.; Romanoff, J., Non-linear analysis of functionally graded microbeams using Eringen׳s non-local differential model, Int. J. Non Lin. Mech., 67, 308-318 (2014)
[55] Rupa, N. S.; Ray, M. C., Analysis of flexoelectric response in nanobeams using nonlocal theory of elasticity, Int. J. Mech. Mater. Des., 13, 3, 453-467 (2017)
[56] Samani, M. S.E.; Beni, Y. T., Size dependent thermo-mechanical buckling of the flexoelectric nanobeam, Mater. Res. Express, 5, 8, Article 085018 pp. (2018)
[57] Shaat, M.; Abdelkefi, A., New insights on the applicability of Eringen’s nonlocal theory, Int. J. Mech. Sci., 121, 67-75 (2017)
[58] She, G. L.; Yuan, F. G.; Ren, Y. R.; Liu, H. B.; Xiao, W. S., Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory, Compos. Struct., 203, 614-623 (2018)
[59] Shen, H. S.; Chen, X.; Guo, L.; Wu, L.; Huang, X. L., Nonlinear vibration of FGM doubly curved panels resting on elastic foundations in thermal environments, Aero. Sci. Technol., 47, 434-446 (2015)
[60] Şimşek, M., Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach, Int. J. Eng. Sci., 105, 12-27 (2016) · Zbl 1423.74412
[61] Tagantsev, A. K., Piezoelectricity and flexoelectricity in crystalline dielectrics, Phys. Rev. B, 34, 8, 5883 (1986)
[62] Tagantsev, A. K.; Meunier, V.; Sharma, P., Novel electromechanical phenomena at the nanoscale: phenomenological theory and atomistic modeling, MRS Bull., 34, 9, 643-647 (2009)
[63] Tang, Y.; Liu, Y.; Zhao, D., Viscoelastic wave propagation in the viscoelastic single walled carbon nanotubes based on nonlocal strain gradient theory, Physica E, 84, 202-208 (2016)
[64] Tang, Y.; Liu, Y.; Zhao, D., Wave dispersion in viscoelastic single walled carbon nanotubes based on the nonlocal strain gradient Timoshenko beam model, Physica E, 87, 301-307 (2017)
[65] Touloukian, Y. S., Thermophysical Properties of High Temperature Solid Materials (1967), MacMillan: MacMillan New York
[66] Wang, Q., Wave propagation in carbon nanotubes via nonlocal continuum mechanics, J. Appl. Phys., 98, 12, 124301 (2005)
[67] Yan, Z.; Jiang, L., Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity, J. Phys. D Appl. Phys., 46, 35, 355502 (2013)
[68] Yan, Z.; Jiang, L., Effect of flexoelectricity on the electroelastic fields of a hollow piezoelectric nanocylinder, Smart Mater. Struct., 24, 6, Article 065003 pp. (2015)
[69] Zeng, S.; Wang, B. L.; Wang, K. F., Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect, Compos. Struct., 207, 340-351 (2019)
[70] Zhang, B.; He, Y.; Liu, D.; Gan, Z.; Shen, L., Size-dependent functionally graded beam model based on an improved third-order shear deformation theory, Eur. J. Mech. Solid., 47, 211-230 (2014) · Zbl 1406.74416
[71] Zhang, R.; Liang, X.; Shen, S., A Timoshenko dielectric beam model with flexoelectric effect, Meccanica, 51, 5, 1181-1188 (2016) · Zbl 1337.74019
[72] Zubko, P.; Catalan, G.; Tagantsev, A. K., Flexoelectric effect in solids, Annu. Rev. Mater. Res., 43, 387-421 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.