×

On the discrete-time compound renewal risk model with dependence. (English) Zbl 1167.91013

The author studies the discrete-time renewal risk model with dependence between claim amount random variable and the interclaim time random variable.
Two types of dependence structures are considered. The first one uses different bivariate geometric distributions. The second one, more flexible, is based on copulas.
Recursive formulas are derived for the probability mass function, moments and present values of the total claim amount over a fixed period of time.
In the context of ruin theory, some formulas for ruin measures are presented and explicit penalty (Gerber-Shiu) function are derived for special cases.
The author also describes the continuous-time compound renewal risk model with dependence and shows how it can be approximated by the discrete-time model.
Numerical examples are provided to illustrate different topics discussed in the paper.

MSC:

91B30 Risk theory, insurance (MSC2010)
60E05 Probability distributions: general theory
91B70 Stochastic models in economics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albrecher, H.; Teugels, J., Exponential behavior in the presence of dependence in risk theory, Journal of Applied Probability, 43, 1, 265-285 (2006)
[2] Basu, A. P.; Dhar, S. K., Bivariate geometric distribution, Journal of Applied Statistical Science, 2, 33-44 (1995) · Zbl 0823.62079
[3] Cheng, S.; Gerber, H. U.; Shiu, E. S.W., Discounted probabilities and ruin theory in the compound binomial model, Insurance: Mathematics and Economics, 26, 239-250 (2000) · Zbl 1013.91063
[4] Cossette, H.; Gaillardetz, P.; Marceau, E.; Rioux, J., On two dependent individual risk models, Insurance: Mathematics and Economics, 30, 153-166 (2002) · Zbl 1055.91044
[5] Cossette, H.; Landriault, D.; Marceau, E., Ruin probabilities in the compound Markov binomial model, Scandinavian Actuarial Journal, 301-323 (2003) · Zbl 1092.91040
[6] Cossette, H.; Landriault, D.; Marceau, E., Exact expressions and upper bound for ruin probabilities in the compound Markov binomial model, Insurance: Mathematics and Economics, 34, 449-466 (2004) · Zbl 1188.91086
[7] Cossette, H.; Landriault, D.; Marceau, E., The compound binomial model defined in a markovian environment, Insurance: Mathematics and Economics, 35, 425-443 (2004) · Zbl 1079.91049
[8] Cossette, H.; Landriault, D.; Marceau, E., Ruin measures related to the surplus process in the compound Markov binomial model, Bulletin de l’Association suisse des actuaires, 77-114 (2004) · Zbl 1333.91022
[9] Cossette, H.; Landriault, D.; Marceau, E., Ruin probabilities in the discrete-time renewal risk model, Insurance: Mathematics and Economics, 38, 309-323 (2006) · Zbl 1090.60076
[10] Denuit, M.; Dhaene, J.; Goovaerts, M. J.; Kaas, R., Actuarial Theory for Dependent Risks — Measures, Orders and Models (2005), Wiley: Wiley New York
[11] Denuit, M.; Genest, C.; Marceau, E., Criteria for the stochastic ordering of random sums, with actuarial applications, Scandinavian Actuarial Journal, 3-16 (2002) · Zbl 1003.60022
[12] Dickson, D. C.M., Some comments on the compound binomial model, ASTIN Bulletin, 24, 33-45 (1994)
[13] Dickson, D. C.M., Insurance Risk and Ruin (2005), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1060.91078
[14] Frey, R.; McNeil, A. J., Dependent defaults in models of portfolio credit risk, Journal of Risk, 6, 59-92 (2003)
[15] Genest, C.; Marceau, E.; Mesfioui, M., Compound Poisson approximations of individual models with dependent risks, Insurance: Mathematics and Economics, 32, 73-81 (2003) · Zbl 1055.91050
[16] Genest, C.; Nešlehovà, J., A primer on copulas for count data, Insurance: ASTIN Bulletin, 37, 2, 475-515 (2007) · Zbl 1274.62398
[17] Gerber, H.U., 1979. An Introduction to Mathematical Risk Theory. In: S.S. Huebner Foundation Monographs, University of Pennsylvania; Gerber, H.U., 1979. An Introduction to Mathematical Risk Theory. In: S.S. Huebner Foundation Monographs, University of Pennsylvania · Zbl 0431.62066
[18] Gerber, H. U., Mathematical fun with the compound binomial process, ASTIN Bulletin, 18, 161-168 (1988)
[19] Gerber, H. U., Mathematical fun with ruin theory, Insurance: Mathematics and Economics, 7, 15-23 (1988) · Zbl 0657.62121
[20] Gerber, H. U.; Shiu, E. S.W., On the time value of ruin, North American Actuarial Journal, 2, 48-78 (1998) · Zbl 1081.60550
[21] Hawkes, A. G., A bivariate exponential distribution with applications to reliability, Journal of the Royal Statistical Society, Series B, 34, 129-131 (1972) · Zbl 0255.60064
[22] Joe, H., Multivariate Models and Dependence Concepts (1997), Chapman and Hall: Chapman and Hall London · Zbl 0990.62517
[23] Johnson, N. L.; Kotz, S.; Balakrishnan, N., Discrete Multivariate Distributions (1997), Wiley: Wiley New York · Zbl 0868.62048
[24] Kocherlakota, S.; Kocherlakota, K., Bivariate Discrete Distributions (1992), Marcel Dekker: Marcel Dekker New York · Zbl 0794.62002
[25] Kotz, S.; Balakrishnan, N.; Johnson, N. L., Continuous Multivariate Distributions, Vol. 1, Models and Applications (2002), Wiley: Wiley New York
[26] Li, S., On a class of discrete time renewal risk models, Scandinavian Actuarial Journal, 241-260 (2005) · Zbl 1142.91043
[27] Li, S., Distributions of the surplus before ruin, the deficit at ruin and the claim causing ruin in a class of discrete time risk models, Scandinavian Actuarial Journal, 271-284 (2005) · Zbl 1143.91033
[28] Liu, S. X.; Guo, J. Y., Discrete risk model revisited, Methodology and Computing in Applied Probability, 8, 303-313 (2006) · Zbl 1098.91074
[29] Marshall, A. W.; Olkin, I., A family of bivariate distributions generated by the bivariate Bernoulli distribution, Journal of the American Statistical Association, 80, 332-338 (1985) · Zbl 0575.60023
[30] Marshall, A. W.; Olkin, I., Multivariate exponential and geometric distributions with limited memory, Journal of Multivariate Analysis, 53, 1, 110-125 (1995) · Zbl 0877.62049
[31] McNeil, A.; Frey, R.; Embretchs, P., Quantitative Risk Management (2005), Princeton Press: Princeton Press Princeton
[32] Müller, A., On the waiting times in queues with dependency between interarrival and service times, Operations Research Letters, 26, 43-47 (2000) · Zbl 0971.90016
[33] Müller, A.; Stoyan, D., Comparison Methods for Stochastic Models and Risks (2002), Wiley: Wiley New York · Zbl 0999.60002
[34] Nelsen, R. B., (An Introduction to Copulas. An Introduction to Copulas, Springer Series in Statistics (2006), Springer-Verlag: Springer-Verlag New York) · Zbl 1152.62030
[35] Nikoloulopoulos, A. K.; Karlis, D., Fitting copulas to bivariate earthquake data: The seismic gap hypothesis revisited, Environmetrics, 19, 3, 251-269 (2008)
[36] Pavlova, K.; Willmot, G. E., The discrete stationary renewal risk model and the Gerber-Shiu discounted penalty function, Insurance: Mathematics and Economics, 35, 267-277 (2004) · Zbl 1103.91046
[37] Rolski, T.; Schmidli, H.; Schmidt, V.; Teugels, J., Stochastic Processes for Insurance and Finance (1999), Wiley: Wiley New York · Zbl 0940.60005
[38] Shaked, M.; Shanthikumar, J. G., Stochastic Orders and their Applications (1994), Academic Press: Academic Press Boston · Zbl 0806.62009
[39] Shiu, E., The probability of eventual ruin in the compound binomial model, ASTIN Bulletin, 19, 179-190 (1989)
[40] Willmot, G. E., Ruin probabilities in the compound binomial model, Insurance: Mathematics and Economics, 12, 133-142 (1993) · Zbl 0778.62099
[41] Willmot, G. E.; Lin, X., Lundberg Approximations for Compound Distributions with Applications (2001), Springer-Verlag: Springer-Verlag New York
[42] Yuen, K. C.; Guo, J., Ruin probabilities for time-correlated claims in compound binomial model, Insurance: Mathematics and Economics, 999, 47-57 (2001) · Zbl 1074.91032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.