×

Nonmonotone slip problem for miscible liquids. (English) Zbl 1412.76022

Summary: In this paper we prove the existence and uniqueness of a solution to the nonstationary two dimensional system of equations describing miscible liquids with nonsmooth, multivalued and nonmonotone boundary conditions of subdifferential type. We employ the regularized Galerkin method combined with results from the theory of hemivariational inequalities.

MSC:

76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
35D30 Weak solutions to PDEs
35Q35 PDEs in connection with fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Allali, K., Existence and uniqueness of solutions for miscible liquids model in porous media, Electron. J. Differential Equations, 254, 1-7, (2013) · Zbl 1288.35006
[2] Allali, K., Existence and uniqueness of solutions to a model describing miscible liquids, C. R. Acad. Sci. Paris, Ser. I, 355, 1148-1153, (2017) · Zbl 1375.76032
[3] Allali, K.; Volpert, V.; Vougalter, V., A model of miscible liquids in porous media, Electron. J. Differential Equations, 264, 1-10, (2015) · Zbl 1330.35310
[4] Aubin, J.-P.; Cellina, A., Differential Inclusions. Set-Valued Maps and Viability Theory, (1984), Springer-Verlag: Springer-Verlag Berlin, New York, Tokyo · Zbl 0538.34007
[5] N. Bessonov, J. Pojman, V. Volpert, Transient interfacial phenomena in miscible liquids, preprint, 2007.; N. Bessonov, J. Pojman, V. Volpert, Transient interfacial phenomena in miscible liquids, preprint, 2007.
[6] Bessonova, N.; Pojmanb, J.; Vinerb, G.; Volpert, V.; Zoltowski, B., Instabilities of diffuse interfaces, Math. Model. Nat. Phenom., 3, 108-125, (2008) · Zbl 1337.76032
[7] Calgaro, C.; Ezzoug, M.; Zahrouni, E., On the global existence of weak solution for a multiphasic incompressible fluid model with Korteweg stress, Math. Methods Appl. Sci., 40, 92-105, (2016) · Zbl 1356.35156
[8] Chainais-Hillairet, C.; Droniou, J., Convergence analysis of a mixed finite volume scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media, SIAM J. Numer. Anal., 4, 2228-2258, (2007) · Zbl 1146.76034
[9] Clarke, F. H., Optimization and Nonsmooth Analysis, (1983), Wiley, Interscience: Wiley, Interscience New York · Zbl 0582.49001
[10] Friedman, A., Partial Differential Equations, (1969), Hold, Rinehart and Winston Inc.
[11] Gasiński, L.; Papageorgiou, N. S., Nonlinear Analysis, (2005), Chapman & Hall: Chapman & Hall Boca Raton, FL
[12] Grisvard, P., Elliptic Problems in Nonsmooth Domains, (1985), Pitman: Pitman Boston · Zbl 0695.35060
[13] Kashiwabara, T., On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type, J. Differential Equations, 254, 756-778, (2013) · Zbl 1253.35102
[14] Korteweg, D. J., Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais connues et sur la théorie de la capillarité dans l’hypothese d’une variation continue de la densit’e, Arch. Néerland. Sci. Exact. Nat., 6, 1-24, (1901) · JFM 32.0756.02
[15] Kostin, I.; Marion, M.; Texier-Picard, R.; Volpert, V., Modelling of miscible liquids with the Korteweg stress, ESAIM Math. Model. Numer. Anal., 37, 741-753, (2003) · Zbl 1201.76045
[16] Łukaszewicz, G.; Kalita, P., Navier-Stokes Equations: An Introduction with Applications, (2016), Springer International Publishing: Springer International Publishing Switzerland · Zbl 1352.35001
[17] Migórski, S.; Ochal, A., Navier-Stokes problems modelled by evolution hemivariational inequalities, Discrete Contin. Dyn. Syst., Suppl., 731-740, (2007) · Zbl 1163.76340
[18] Migórski, S.; Ochal, A.; Sofonea, M., Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Adv. Mech. Math., vol. 26, (2013), Springer: Springer New York · Zbl 1262.49001
[19] Pompe, W., Korn’s first inequality with variable coefficients and its generalization, Comment. Math. Univ. Carolin., 44, 57-70, (2003) · Zbl 1098.35042
[20] Simon, J., Compact sets in the space \(L^p(0, T; B)\), Ann. Mat. Pura Appl., 146, 65-96, (1986) · Zbl 0629.46031
[21] Szafraniec, P., Evolution Boussinesq model with nonmonotone friction and heat flux, Nonlinear Anal. Real World Appl., 34, 403-415, (2017) · Zbl 1354.35114
[22] Temam, R., Navier-Stokes Equations, (1979), North-Holland: North-Holland Amsterdam · Zbl 0454.35073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.