×

On the Gorenstein defect categories. (English) Zbl 1451.18027

Summary: The main theme of this paper is to study different “Gorenstein defect categories” and their connections. This is done by studying rings for which \(\mathbb{K}_{\text{ac}} (\text{Prj-}R) = \mathbb{K}_{\text{tac}} (\text{Prj-}R)\), that is, rings enjoying the property that every acyclic complex of projectives is totally acyclic. Such studies have been started by Iyengar and Krause over commutative Noetherian rings with a dualizing complex. We show that a virtually Gorenstein Artin algebra is Gorenstein if and only if it satisfies the above mentioned property. Then, we introduce recollements connecting several categories which help in providing categorical characterizations of Gorenstein rings. Finally, we study relative singularity categories that lead us to some more “Gorenstein defect categories”.

MSC:

18G80 Derived categories, triangulated categories
16E35 Derived categories and associative algebras
16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)
16G10 Representations of associative Artinian rings
16P10 Finite rings and finite-dimensional associative algebras
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] M. Auslander, “Representation theory of Artin algebras, I”, Comm. Algebra 1 (1974), 177-268. · Zbl 0285.16029 · doi:10.1080/00927877409412807
[2] M. Auslander and I. Reiten, “Stable equivalence of dualizing \(R\)-varieties”, Advances in Math. 12 (1974), 306-366. · Zbl 0285.16027 · doi:10.1016/S0001-8708(74)80007-1
[3] M. Auslander and S. O. Smalø, “Almost split sequences in subcategories”, J. Algebra 69:2 (1981), 426-454. · Zbl 0457.16017 · doi:10.1016/0021-8693(81)90214-3
[4] L. L. Avramov and H.-B. Foxby, “Homological dimensions of unbounded complexes”, J. Pure Appl. Algebra 71:2-3 (1991), 129-155. · Zbl 0737.16002 · doi:10.1016/0022-4049(91)90144-Q
[5] H. Bass, “On the ubiquity of Gorenstein rings”, Math. Z. 82 (1963), 8-28. · Zbl 0112.26604 · doi:10.1007/BF01112819
[6] A. A. Beilinson, J. Bernstein, and P. Deligne, “Faisceaux pervers”, pp. 5-171 in Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque 100, Soc. Math. France, Paris, 1982. · Zbl 0536.14011
[7] A. Beligiannis, “Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras”, J. Algebra 288:1 (2005), 137-211. · Zbl 1119.16007 · doi:10.1016/j.jalgebra.2005.02.022
[8] A. Beligiannis, “On algebras of finite Cohen-Macaulay type”, Adv. Math. 226:2 (2011), 1973-2019. · Zbl 1239.16016 · doi:10.1016/j.aim.2010.09.006
[9] A. Beligiannis and I. Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc. 883, 2007. · Zbl 1124.18005 · doi:10.1090/memo/0883
[10] P. A. Bergh, S. Oppermann, and D. A. Jorgensen, “The Gorenstein defect category”, Q. J. Math. 66:2 (2015), 459-471. · Zbl 1327.13041 · doi:10.1093/qmath/hav001
[11] X.-W. Chen, “A note on the singularity category of an endomorphism ring”, Ark. Mat. 53:2 (2015), 237-248. · Zbl 1333.18018 · doi:10.1007/s11512-014-0200-0
[12] L. W. Christensen, A. Frankild, and H. Holm, “On Gorenstein projective, injective and flat dimensions- a functorial description with applications”, J. Algebra 302:1 (2006), 231-279. · Zbl 1104.13008 · doi:10.1016/j.jalgebra.2005.12.007
[13] N. Gao and P. Zhang, “Gorenstein derived categories”, J. Algebra 323:7 (2010), 2041-2057. · Zbl 1222.18005 · doi:10.1016/j.jalgebra.2010.01.027
[14] D. Gorenstein, “An arithmetic theory of adjoint plane curves”, Trans. Amer. Math. Soc. 72 (1952), 414-436. · Zbl 0046.38503 · doi:10.1090/S0002-9947-1952-0049591-8
[15] H. Holm, “Gorenstein homological dimensions”, J. Pure Appl. Algebra 189:1-3 (2004), 167-193. · Zbl 1050.16003 · doi:10.1016/j.jpaa.2003.11.007
[16] Y. Iwanaga, “On rings with finite self-injective dimension”, Comm. Algebra 7:4 (1979), 393-414. · Zbl 0399.16010 · doi:10.1080/00927877908822356
[17] O. Iyama, K. Kato, and J.-I. Miyachi, “Recollement of homotopy categories and Cohen-Macaulay modules”, J. K-Theory 8:3 (2011), 507-542. · Zbl 1251.18008 · doi:10.1017/is011003007jkt143
[18] S. Iyengar and H. Krause, “Acyclicity versus total acyclicity for complexes over Noetherian rings”, Doc. Math. 11 (2006), 207-240. · Zbl 1119.13014
[19] P. Jørgensen, “Existence of Gorenstein projective resolutions and Tate cohomology”, J. Eur. Math. Soc. \((\) JEMS \() 9\):1 (2007), 59-76. · Zbl 1114.13012
[20] P. Jørgensen and K. Kato, “Symmetric Auslander and Bass categories”, Math. Proc. Cambridge Philos. Soc. 150:2 (2011), 227-240. · Zbl 1216.13008 · doi:10.1017/S0305004110000629
[21] B. Keller, “Derived categories and their uses”, pp. 671-701 in Handbook of algebra, vol. 1, edited by M. Hazewinkel, Elsevier, Amsterdam, 1996. · Zbl 0862.18001
[22] F. Kong and P. Zhang, “From CM-finite to CM-free”, J. Pure Appl. Algebra 220:2 (2016), 782-801. · Zbl 1352.16016 · doi:10.1016/j.jpaa.2015.07.016
[23] S. König, “Tilting complexes, perpendicular categories and recollements of derived module categories of rings”, J. Pure Appl. Algebra 73:3 (1991), 211-232. · Zbl 0760.16003 · doi:10.1016/0022-4049(91)90029-2
[24] H. Krause, “Localization theory for triangulated categories”, pp. 161-235 in Triangulated categories, edited by T. Holm et al., London Math. Soc. Lecture Note Ser. 375, Cambridge Univ. Press, 2010. · Zbl 1232.18012
[25] H. Krause, “Approximations and adjoints in homotopy categories”, Math. Ann. 353:3 (2012), 765-781. · Zbl 1323.18003 · doi:10.1007/s00208-011-0703-y
[26] H. Krause, “Morphisms determined by objects and flat covers”, Forum Math. 28:3 (2016), 425-435. · Zbl 1355.18004 · doi:10.1515/forum-2014-0115
[27] H. Krause and Ø. Solberg, “Applications of cotorsion pairs”, J. London Math. Soc. \((2) 68\):3 (2003), 631-650. · Zbl 1061.16006 · doi:10.1112/S0024610703004757
[28] J.-I. Miyachi, “Localization of triangulated categories and derived categories”, J. Algebra 141:2 (1991), 463-483. · Zbl 0739.18006 · doi:10.1016/0021-8693(91)90243-2
[29] J.-I. Miyachi, “Derived categories with applications to representations of algebras”, lecture notes, 2000.
[30] D. Murfet, “Derived categories, part I”, 2006, http://therisingsea.org/notes/DerivedCategories.pdf.
[31] D. Murfet, “Triangulated categories, part I”, 2007, http://therisingsea.org/notes/TriangulatedCategories.pdf.
[32] D. Murfet and S. Salarian, “Totally acyclic complexes over Noetherian schemes”, Adv. Math. 226:2 (2011), 1096-1133. · Zbl 1205.14019 · doi:10.1016/j.aim.2010.07.002
[33] A. Neeman, “The homotopy category of flat modules, and Grothendieck duality”, Invent. Math. 174:2 (2008), 255-308. · Zbl 1184.18008 · doi:10.1007/s00222-008-0131-0
[34] J. Rickard, “Morita theory for derived categories”, J. London Math. Soc. \((2) 39\):3 (1989), 436-456. · Zbl 0642.16034 · doi:10.1112/jlms/s2-39.3.436
[35] N. Spaltenstein, “Resolutions of unbounded complexes”, Compositio Math. 65:2 (1988), 121-154. · Zbl 0636.18006
[36] J.-L. Verdier, Des catégories dérivées des catégories abéliennes, Astérisque 239, Soc. Math. France, Paris, 1996. · Zbl 0882.18010
[37] X. · Zbl 1238.16002 · doi:10.1080/00927871003741497
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.