×

Limit theorems for record indicators in threshold \(F^\alpha \)-schemes. (English. Russian original) Zbl 1456.60069

Theory Probab. Appl. 65, No. 3, 405-417 (2020); translation from Teor. Veroyatn. Primen. 65, No. 3, 521-537 (2020).
Summary: In Nevzorov’s \(F^\alpha \)-scheme, one deals with a sequence of independent random variables with distribution functions that are powers of a common continuous distribution function. A key property of the \(F^\alpha \)-scheme is that the record indicators for such a sequence are independent. This allows one to obtain several important limit theorems for the total number of records in the sequence up to time \(n\to\infty \). We extend these theorems to a much more general class of sequences of random variables obeying a “threshold \(F^\alpha \)-scheme” where the distribution functions of the variables are close to the powers of a common \(F\) only in their right tails, above certain nonrandom nondecreasing threshold levels. Of independent interest is the characterization of the growth rate for extremal processes that we derive in order to verify the conditions of our main theorem. We also establish the asymptotic pairwise independence of record indicators in a special case of threshold \(F^\alpha \)-schemes.

MSC:

60F15 Strong limit theorems
60G70 Extreme value theory; extremal stochastic processes
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R. Ballerini and S. I. Resnick, Embedding sequences of successive maxima in extremal processes, with applications, J. Appl. Probab., 24 (1987), pp. 827-837, https://doi.org/10.2307/3214208. · Zbl 0633.60046
[2] K. Borovkov and D. Pfeifer, On record indices and record times, J. Statist. Plann. Inference, 45 (1995), pp. 65-79, https://doi.org/10.1016/0378-3758(94)00063-8. · Zbl 0826.60039
[3] K. Borovkov and D. Pfeifer, On improvements of the order of approximation in the Poisson limit theorem, J. Appl. Probab., 33 (1996), pp. 146-155, https://doi.org/10.2307/3215272. · Zbl 0852.60025
[4] P. Deheuvels and D. Pfeifer, Semigroups and Poisson approximation, in New Perspectives in Theoretical and Applied Statistics (Bilbao, 1986), Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., Wiley, New York, 1987, pp. 439-448. · Zbl 0606.60034
[5] P. Deheuvels and D. Pfeifer, On a relationship between Uspensky’s theorem and Poisson approximations, Ann. Inst. Statist. Math., 40 (1988), pp. 671-681, https://doi.org/10.1007/BF00049425. · Zbl 0675.60027
[6] R. L. Dobrushin, Prescribing a system of random variables by conditional distributions, Theory Probab. Appl., 15 (1970), pp. 458-486, https://doi.org/10.1137/1115049. · Zbl 0264.60037
[7] P. Doukhan, O. I. Klesov, A. G. Pakes, and J. G. Steinebach, Limit theorems for record counts and times in the \(F^\alpha \)-scheme, Extremes, 16 (2013), pp. 147-171, https://doi.org/10.1007/s10687-012-0157-y. · Zbl 1282.60052
[8] P. Doukhan, O. I. Klesov, and J. G. Steinebach, Strong laws of large numbers in an \(F^\alpha \)-scheme, in Mathematical Statistics and Limit Theorems, Springer, Cham, 2015, pp. 287-303, https://doi.org/10.1007/978-3-319-12442-1_16. · Zbl 1378.60059
[9] A. P. Godbole, On Klass’ series criterion for the minimal growth rate of partial maxima, Statist. Probab. Lett., 5 (1987), pp. 235-238, https://doi.org/10.1016/0167-7152(87)90047-2. · Zbl 0616.60037
[10] G. Haiman, Étude des extrêmes d’une suite stationnaire \(m\)-dépendante avec une application relative aux accroissements du processus de Wiener, Ann. Inst. H. Poincaré Probab. Statist., 23 (1987), pp. 425-457. · Zbl 0631.60031
[11] G. Haiman, N. Mayeur, V. Nevzorov, and M. Puri, Records and 2-block records of 1-dependent stationary sequences under local dependence, Ann. Inst. H. Poincaré Probab. Statist., 34 (1998), pp. 481-503, https://doi.org/10.1016/S0246-0203(98)80025-3. · Zbl 0916.60052
[12] R. Kemp, Fundamentals of the Average Case Analysis of Particular Algorithms, Wiley-Teubner Ser. Comput. Sci., John Wiley & Sons, Ltd., Chichester; B. G. Teubner, Stuttgart, 1984, https://doi.org/10.1007/978-3-663-12191-6. · Zbl 0638.68026
[13] M. J. Klass, The minimal growth rate of partial maxima, Ann. Probab., 12 (1984), pp. 380-389, https://doi.org/10.1214/aop/1176993296. · Zbl 0536.60038
[14] M. J. Klass, The Robbins-Siegmund series criterion for partial maxima, Ann. Probab., 13 (1985), pp. 1369-1370, https://doi.org/10.1214/aop/1176992820. · Zbl 0576.60023
[15] V. B. Nevzorov, Limit theorems for order statistics and record values, in Abstracts of the III Vilnius Conference on Probability Theory and Mathematical Statistics, Vol. 2, Lithuanian Academy of Sciences Institute of Mathematics and Cybernetics, Vilnius, 1981, pp. 86-87.
[16] V. B. Nevzorov, Record and interrecord times for sequences of nonidentically distributed random variables, J. Soviet Math., 36 (1987), pp. 510-516, https://doi.org/10.1007/BF01663462. · Zbl 0611.62049
[17] V. B. Nevzorov, Records, Theory Probab. Appl., 32 (1988), pp. 201-228, https://doi.org/10.1137/1132032.
[18] V. B. Nevzorov, Records: Mathematical Theory, Transl. Math. Monogr. 194, Amer. Math. Soc., Providence, RI, 2001.
[19] M. Ahsanullah and V. B. Nevzorov, Records via Probability Theory, Atlantis Stud. Probab. Stat. 6, Atlantis Press, Paris, 2015, https://doi.org/10.2991/978-94-6239-136-9. · Zbl 1441.62002
[20] D. Pfeifer, Extremal processes, secretary problems and the 1/e-law, J. Appl. Probab., 26 (1989), pp. 722-733, https://doi.org/10.2307/3214377. · Zbl 0693.60030
[21] D. Pfeifer, Some remarks on Nevzorov’s record model, Adv. in Appl. Probab., 23 (1991), pp. 823-834, https://doi.org/10.2307/1427678. · Zbl 0744.60053
[22] S. I. Resnick, Extreme Values, Regular Variation and Point Processes, Appl. Probab. Ser. Appl. Probab. Trust 4, Springer-Verlag, New York, 1987, https://doi.org/10.1007/978-0-387-75953-1. · Zbl 0633.60001
[23] S. M. Ross, A simple heuristic approach to simplex efficiency, European J. Oper. Res., 9 (1982), pp. 344-346, https://doi.org/10.1016/0377-2217(82)90177-1.
[24] M. C. K. Yang, On the distribution of the inter-record times in an increasing population, J. Appl. Probab., 12 (1975), pp. 148-154, https://doi.org/10.2307/3212417. · Zbl 0306.60068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.