×

O(\(N\)) and O(\(N\)) and O(\(N\)). (English) Zbl 1383.81147

Summary: Three related analyses of \(\phi^4\) theory with O(\(N\)) symmetry are presented. In the first, we review the O(\(N\)) model over the \(p\)-adic numbers and the discrete renormalization group transformations which can be understood as spin blocking in an ultrametric context. We demonstrate the existence of a Wilson-Fisher fixed point using an \(\epsilon\) expansion, and we show how to obtain leading order results for the anomalous dimensions of low dimension operators near the fixed point. Along the way, we note an important aspect of ultrametric field theories, which is a non-renormalization theorem for kinetic terms. In the second analysis, we employ large \(N\) methods to establish formulas for anomalous dimensions which are valid equally for field theories over the \(p\)-adic numbers and field theories on \(\mathbb{R}^n\). Results for anomalous dimensions agree between the first and second analyses when they can be meaningfully compared. In the third analysis, we consider higher derivative versions of the O(\(N\)) model on \(\mathbb{R}^n\), the simplest of which has been studied in connection with spatially modulated phases. Our general formula for anomalous dimensions can still be applied. Analogies with two-derivative theories hint at the existence of some interesting unconventional field theories in four real Euclidean dimensions.

MSC:

81T17 Renormalization group methods applied to problems in quantum field theory
81T10 Model quantum field theories
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] K.G. Wilson, Renormalization group and critical phenomena. 1. Renormalization group and the Kadanoff scaling picture, Phys. Rev.B 4 (1971) 3174 [INSPIRE]. · Zbl 1236.82017
[2] K.G. Wilson, Renormalization group and critical phenomena. 2. Phase space cell analysis of critical behavior, Phys. Rev.B 4 (1971) 3184 [INSPIRE]. · Zbl 1236.82016
[3] K.G. Wilson and J.B. Kogut, The Renormalization group and the ϵ-expansion, Phys. Rept.12 (1974) 75 [INSPIRE]. · doi:10.1016/0370-1573(74)90023-4
[4] L.P. Kadanoff, Scaling laws for Ising models near Tc, Physics2 (1966) 263.
[5] F.J. Dyson, Existence of a phase transition in a one-dimensional Ising ferromagnet, Commun. Math. Phys.12 (1969) 91 [INSPIRE]. · Zbl 1306.47082 · doi:10.1007/BF01645907
[6] P.M. Bleher and J.G. Sinai, Investigation of the critical point in models of the type of Dyson’s hierarchical models, Commun. Math. Phys.33 (1973) 23. · doi:10.1007/BF01645604
[7] P.M. Bleher and Ya. G. Sinai, Critical Indices for Dyson’s Asymptotically Hierarchical Models, Commun. Math. Phys.45 (1975) 247 [INSPIRE].
[8] P.M. Bleher and P. Major, Critical Phenomena and Universal Exponents in Statistical Physics. On Dyson’s Hierarchical Model, Ann. Probab.15 (1987) 431. · Zbl 0628.60101
[9] E. Yu. Lerner and M.D. Missarov, Scalar Models of P−adic Quantum Field Theory and Hierarchical Models, Theor. Math. Phys.78 (1989) 177 [INSPIRE]. · doi:10.1007/BF01018683
[10] Y. Okada and M.R. Ubriaco, Renormalization of O(N) Nonlinear σ Model on a P-adic Field, Phys. Rev. Lett.61 (1988) 1910 [INSPIRE]. · doi:10.1103/PhysRevLett.61.1910
[11] M.D. Missarov and R.G. Stepanov, Critical exponents in p-adic ϕ4-model, AIP Conf. Proc.826 (2006) 129 [INSPIRE]. · Zbl 1152.82310 · doi:10.1063/1.2193117
[12] M.D. Missarov and R.G. Stepanov, ϵ-expansion in the N-component ϕ4model, Theor. Math. Phys.146 (2006) 304 [INSPIRE]. · Zbl 1177.81107
[13] M. Missarov, p-Adic Renormalization Group Solutions and the Euclidean Renormalization Group Conjectures, P-Adic Numbers Ultrametric Anal. Appl.4 (2012) 109. · Zbl 1251.81047
[14] A.N. Vasiliev, Yu.M. Pismak, and Yu.R. Khonkonen, Simple Method of Calculating the Critical Indices in the 1/N Expansion, Theor. Math. Phys.46 (1981) 104 [INSPIRE]. · doi:10.1007/BF01030844
[15] A.N. Vasiliev, Yu.M. Pismak and Yu.R. Khonkonen, 1/N Expansion: Calculation of the Exponents η and Nu in the Order 1/N2for Arbitrary Number of Dimensions, Theor. Math. Phys.47 (1981) 465 [INSPIRE]. · doi:10.1007/BF01019296
[16] I.M. Gelfand, M.I. Graev and I.I. Pyatetskii-Shapiro, Representation Theory and Automorphic Functions, Saunders, Philadelphia U.S.A. (1969).
[17] L. Brekke and P.G.O. Freund, p-adic numbers in physics, Phys. Rept.233 (1993) 1 [INSPIRE].
[18] S.S. Gubser, J. Knaute, S. Parikh, A. Samberg and P. Witaszczyk, p-adic AdS/CFT, Commun. Math. Phys.352 (2017) 1019 [arXiv:1605.01061] [INSPIRE].
[19] M. Heydeman, M. Marcolli, I. Saberi and B. Stoica, Tensor networks, p-adic fields and algebraic curves: arithmetic and the AdS3/CFT2correspondence, arXiv:1605.07639 [INSPIRE]. · Zbl 1414.81207
[20] M.E. Fisher, S.-k. Ma and B.G. Nickel, Critical Exponents for Long-Range Interactions, Phys. Rev. Lett.29 (1972) 917 [INSPIRE]. · doi:10.1103/PhysRevLett.29.917
[21] J. Sak, Recursion Relations and Fixed Points for Ferromagnets with Long-Range Interactions, Phys. Rev.B 8 (1973) 281. · doi:10.1103/PhysRevB.8.281
[22] M.F. Paulos, S. Rychkov, B.C. van Rees and B. Zan, Conformal Invariance in the Long-Range Ising Model, Nucl. Phys.B 902 (2016) 246 [arXiv:1509.00008] [INSPIRE]. · Zbl 1332.82017 · doi:10.1016/j.nuclphysb.2015.10.018
[23] E. Gava and R. Jengo, A four-dimensional nonlinear σ-model, Nucl. Phys.B 140 (1978) 510 [INSPIRE]. · doi:10.1016/0550-3213(78)90010-X
[24] R.M. Hornreich, M. Luban and S. Shtrikman, Critical Behavior at the Onset ofk→\[ \overrightarrow{k} \]-Space Instability on the λ Line, Phys. Rev. Lett.35 (1975) 1678 [INSPIRE]. · doi:10.1103/PhysRevLett.35.1678
[25] A. Michelson, Phase diagrams near the Lifshitz point. I. Uniaxial magnetization, Phys. Rev.B 16 (1977) 577. · doi:10.1103/PhysRevB.16.577
[26] S.A. Brazovskii, Phase transition of an isotropic system to a nonuniform state, J. Exper. Theor. Phys.68 (1975) 175.
[27] W. Selke, The ANNNI model - Theoretical analysis and experimental application, Phys. Rept.170 (1988) 213. · doi:10.1016/0370-1573(88)90140-8
[28] I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett.B 550 (2002) 213 [hep-th/0210114] [INSPIRE]. · Zbl 1001.81057 · doi:10.1016/S0370-2693(02)02980-5
[29] S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP09 (2010) 115 [arXiv:0912.3462] [INSPIRE]. · Zbl 1291.83107 · doi:10.1007/JHEP09(2010)115
[30] S.S. Gubser and S. Parikh, Geodesic bulk diagrams on the Bruhat-Tits tree, Phys. Rev.D 96 (2017) 066024 [arXiv:1704.01149] [INSPIRE].
[31] S.S. Gubser et al., Edge length dynamics on graphs with applications to p-adic AdS/CFT, JHEP06 (2017) 157 [arXiv:1612.09580] [INSPIRE]. · Zbl 1380.83066 · doi:10.1007/JHEP06(2017)157
[32] Y. Lin, L. Lu and S.-T. Yau, Ricci curvature of graphs, Tohoku Math. J. Ser. 263 (2011) 605. · Zbl 1237.05204
[33] H. Kleinert and V. Schulte-Frohlinde, Critical properties of ϕ4-theories, World Scientific, Singapore (2001). · Zbl 1033.81007
[34] M. D’Eramo, L. Peliti and G. Parisi, Theoretical predictions for critical exponents at the λ-point of bose liquids, Lett. Nuovo Cim.2 (1971) 878. · doi:10.1007/BF02774121
[35] M. Ciuchini, S.E. Derkachov, J.A. Gracey and A.N. Manashov, Computation of quark mass anomalous dimension at O(1/Nf2) in quantum chromodynamics, Nucl. Phys.B 579 (2000) 56 [hep-ph/9912221] [INSPIRE].
[36] J. Honkonen and M. Yu. Nalimov, Crossover between field theories with short range and long range exchange or correlations, J. Phys.A 22 (1989) 751 [INSPIRE].
[37] M. Chiara Angelini, G. Parisi and F. Ricci-Tersenghi, Relations between Short Range and Long Range Ising models, arXiv:1401.6805 [arXiv:1401.6805].
[38] E. Brezin, G. Parisi and F. Ricci-Tersenghi, The Crossover Region Between Long-Range and Short-Range Interactions for the Critical Exponents, J. Stat. Phys.157 (2014) 855 [arXiv:1407.3358]. · Zbl 1318.82017 · doi:10.1007/s10955-014-1081-0
[39] N. Defenu, A. Trombettoni and A. Codello, Fixed-point structure and effective fractional dimensionality for O(N) models with long-range interactions, Phys. Rev.E 92 (2015) 052113 [arXiv:1409.8322] [INSPIRE].
[40] R. Hornreich, M. Luban, and S. Shtrikman, Critical exponents at a Lifshitz point to O(1/N), Phys. Lett.A 55 (1975) 269. · doi:10.1016/0375-9601(75)90465-X
[41] S.W. Hawking, Who’s afraid of (higher derivative) ghosts?, in Quantum field theory and quantum statistics: essays in honour of the sixtieth birthday of ES Fradkin. V. 2, Hilger, Briston U.K. (1985).
[42] F.J. de Urries and J. Julve, Ostrogradski formalism for higher derivative scalar field theories, J. Phys.A 31 (1998) 6949 [hep-th/9802115] [INSPIRE]. · Zbl 0934.70020
[43] K. Jansen, J. Kuti and C. Liu, The Higgs model with a complex ghost pair, Phys. Lett.B 309 (1993) 119 [hep-lat/9305003] [INSPIRE].
[44] S.W. Hawking and T. Hertog, Living with ghosts, Phys. Rev.D 65 (2002) 103515 [hep-th/0107088] [INSPIRE].
[45] M.V. Ostrogradski, Mémoire sur les équations différentielles relatives au problème des isopérimetres, Mem. Ac. St. Petersbourg VI4 (1850) 385.
[46] A.B. Zamolodchikov, Conformal Symmetry and Multicritical Points in Two-Dimensional Quantum Field Theory. (In Russian), Sov. J. Nucl. Phys.44 (1986) 529 [INSPIRE].
[47] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) Archipelago, JHEP11 (2015) 106 [arXiv:1504.07997] [INSPIRE]. · Zbl 1388.81054 · doi:10.1007/JHEP11(2015)106
[48] F. Gliozzi, A. Guerrieri, A.C. Petkou and C. Wen, Generalized Wilson-Fisher Critical Points from the Conformal Operator Product Expansion, Phys. Rev. Lett.118 (2017) 061601 [arXiv:1611.10344] [INSPIRE]. · doi:10.1103/PhysRevLett.118.061601
[49] F. Gliozzi, A.L. Guerrieri, A.C. Petkou and C. Wen, The analytic structure of conformal blocks and the generalized Wilson-Fisher fixed points, JHEP04 (2017) 056 [arXiv:1702.03938] [INSPIRE]. · Zbl 1378.81119 · doi:10.1007/JHEP04(2017)056
[50] R.J. Elliott, Phenomenological Discussion of Magnetic Ordering in the Heavy Rare-Earth Metals, Phys. Rev.124 (1961) 346 [INSPIRE]. · doi:10.1103/PhysRev.124.346
[51] M.E. Fisher and W. Selke, Infinitely Many Commensurate Phases in a Simple Ising Model, Phys. Rev. Lett.44 (1980) 1502 [INSPIRE]. · Zbl 1404.82079 · doi:10.1103/PhysRevLett.44.1502
[52] B. Berche, R. Kenna and J.C. Walter, Hyperscaling above the upper critical dimension, Nucl. Phys.B 865 (2012) 115 [INSPIRE]. · Zbl 1262.82015 · doi:10.1016/j.nuclphysb.2012.07.021
[53] T.P. Eggarter, Cayley trees, the Ising problem and the thermodynamic limit, Phys. Rev.B 9 (1974) 2989 [INSPIRE]. · doi:10.1103/PhysRevB.9.2989
[54] E. Muller-Hartmann and J. Zittartz, New Type of Phase Transition, Phys. Rev. Lett.33 (1974) 893 [INSPIRE]. · doi:10.1103/PhysRevLett.33.893
[55] D.J. Broadhurst, J.A. Gracey and D. Kreimer, Beyond the triangle and uniqueness relations: Nonzeta counterterms at large-N from positive knots, Z. Phys.C 75 (1997) 559 [hep-th/9607174] [INSPIRE].
[56] R.C. Brower and P. Goddard, Generalized Virasoro models, Lett. Nuovo Cim.1S2 (1971) 1075 [INSPIRE].
[57] P.G.O. Freund and M. Olson, Nonarchimedean strings, Phys. Lett.B 199 (1987) 186 [INSPIRE]. · doi:10.1016/0370-2693(87)91356-6
[58] P.G.O. Freund and E. Witten, Adelic string amplitudes, Phys. Lett.B 199 (1987) 191 [INSPIRE]. · doi:10.1016/0370-2693(87)91357-8
[59] L. Brekke, P.G.O. Freund, M. Olson and E. Witten, Nonarchimedean String Dynamics, Nucl. Phys.B 302 (1988) 365 [INSPIRE]. · doi:10.1016/0550-3213(88)90207-6
[60] A. Gadde, In search of conformal theories, arXiv:1702.07362 [INSPIRE]. · Zbl 1434.81101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.