×

Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting. (English) Zbl 1390.76381

Summary: In this paper, we present a novel arbitrary high order accurate discontinuous Galerkin (DG) finite element method on space-time adaptive Cartesian meshes (AMR) for hyperbolic conservation laws in multiple space dimensions, using a high-order a posteriori sub-cell ADER-WENO finite volume limiter. Notoriously, the original DG method produces strong oscillations in the presence of discontinuous solutions and several types of limiters have been introduced over the years to cope with this problem. Following the innovative idea recently proposed in [the third author et al., J. Comput. Phys. 278, 47–75 (2014; Zbl 1349.65448)], the discrete solution within the troubled cells is recomputed by scattering the DG polynomial at the previous time step onto a suitable number of sub-cells along each direction. Relying on the robustness of classical finite volume WENO schemes, the sub-cell averages are recomputed and then gathered back into the DG polynomials over the main grid. In this paper, this approach is implemented for the first time within a space-time adaptive AMR framework in two and three space dimensions, after assuring the proper averaging and projection between sub-cells that belong to different levels of refinement. The combination of the sub-cell resolution with the advantages of AMR allows for an unprecedented ability in resolving even the finest details in the dynamics of the fluid. The spectacular resolution properties of the new scheme have been shown through a wide number of test cases performed in two and in three space dimensions, both for the Euler equations of compressible gas dynamics and for the magnetohydrodynamics (MHD) equations.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1349.65448

Software:

RIEMANN; MOOD; GEOCLAW
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Burbeau, A.; Sagaut, P.; Bruneau, C. H., A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods, J Comput Phys, 169, 1, 111-150, (2001) · Zbl 0979.65081
[2] Agbaglah, G.; Delaux, S.; Fuster, D.; Hoepffner, J.; Josserand, C.; Popinet, S., Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method, Compte-rendus de l’Académie des Sciences, Paris, 339, 194-207, (2011) · Zbl 1217.76044
[3] Baeza, A.; Mulet, P., Adaptive mesh refinement techniques for high-order shock capturing schemes for multi-dimensional hydrodynamic simulations, Int J Numer Methods Fluids, 52, 455-471, (2006) · Zbl 1370.76116
[4] Balsara, D.; Altmann, C.; Munz, C. D.; Dumbser, M., A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes, J Comput Phys, 226, 586-620, (2007) · Zbl 1124.65072
[5] Balsara, D.; Shu, C. W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J Comput Phys, 160, 405-452, (2000) · Zbl 0961.65078
[6] Balsara, D.; Spicer, D., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J Comput Phys, 149, 270-292, (1999) · Zbl 0936.76051
[7] Balsara, D. S., Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows, J Comput Phys, 229, 1970-1993, (2010) · Zbl 1303.76140
[8] Balsara, D. S., A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows, J Comput Phys, 231, 7476-7503, (2012) · Zbl 1284.76261
[9] Balsara, D. S., Multidimensional Riemann problem with self-similar internal structure. part I application to hyperbolic conservation laws on structured meshes, J Comput Phys, 277, 163-200, (2014) · Zbl 1349.76303
[10] Balsara, D. S.; Dumbser, M.; Abgrall, R., Multidimensional HLLC Riemann solver for unstructured meshes - with application to Euler and MHD flows, J Comput Phys, 261, 172-208, (2014) · Zbl 1349.76426
[11] Balsara, D. S.; Meyer, C.; Dumbser, M.; Du, H.; Xu, Z., Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes speed comparisons with Runge Kutta methods, J Comput Phys, 235, 934-969, (2013) · Zbl 1291.76237
[12] Baumann, C. E.; Oden, J. T., A discontinuous hp finite element method for the Euler and Navier-Stokes equations, Int J Numer Methods Fluids, 31, 1, 79-95, (1999), [cited By (since 1996)144] · Zbl 0985.76048
[13] Baumann, C. E.; Tinsley Oden, J., A discontinuous hp finite element method for convection-diffusion problems, Comput Methods Appl Mech Eng, 175, 3-4, 311-341, (1999), [cited By (since 1996) 221] · Zbl 0924.76051
[14] Ben-Artzi, M.; Falcovitz, J., A second-order Godunov-type scheme for compressible fluid dynamics, J Comput Phys, 55, 1-32, (1984) · Zbl 0535.76070
[15] Berger, M. J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J Comput Phys, 82, 64-84, (1989) · Zbl 0665.76070
[16] Berger, M. J.; Jameson, A., Automatic adaptive grid refinement for the Euler equations, AIAA J, 23, 561-568, (1985)
[17] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J Comput Phys, 53, 484, (1984) · Zbl 0536.65071
[18] Berger, M. J.; George, D. L.; LeVeque, R. J.; Mandli, L. T., The geoclaw software for depth-averaged flows with adaptive refinement, Adv Water Resour, 34, 9, 1195-1206, (2011), [New Computational Methods and Software Tools]
[19] Bourgeade, A.; LeFloch, P.; Raviart, P. A., An asymptotic expansion for the solution of the generalized Riemann problem, part II: application to the gas dynamics equations, Annales de l’institut Henri Poincaré (C) Analyse non linéaire, 6, 437-480, (1989) · Zbl 0703.35106
[20] Brugnano, L.; Casulli, V., Iterative solution of piecewise linear systems, SIAM J Sci Comput, 30, 463-472, (2007) · Zbl 1155.90457
[21] Brugnano, L.; Casulli, V., Iterative solution of piecewise linear systems and applications to flows in porous media, SIAM J Sci Comput, 31, 1858-1873, (2009) · Zbl 1190.90233
[22] Brugnano, L.; Sestini, A., Iterative solution of piecewise linear systems for the numerical solution of obstacle problems, J Numer Anal Ind Appl Math, 6, 67-82, (2012) · Zbl 1432.65079
[23] Castro, C. C.; Toro, E. F., Solvers for the high-order Riemann problem for hyperbolic balance laws, J Comput Phys, 227, 2481-2513, (2008) · Zbl 1148.65066
[24] Casulli, V.; Zanolli, P., A nested Newton-type algorithm for finite volume methods solving richards’ equation in mixed form, SIAM J Sci Comput, 32, 2255-2273, (2009) · Zbl 1410.76209
[25] Casulli, V.; Zanolli, P., Iterative solutions of mildly nonlinear systems, J Comput Appl Math, 236, 3937-3947, (2012) · Zbl 1251.65073
[26] Cesenek, J.; Feistauer, M.; Horacek, J.; Kucera, V.; Prokopova, J., Simulation of compressible viscous flow in time-dependent domains, Appl Math Comput, 219, 7139-7150, (2013) · Zbl 1426.76233
[27] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation lawsmulti-dimensional optimal order detection (MOOD), J Comput Phys, 230, 10, 4028-4050, (2011) · Zbl 1218.65091
[28] Cockburn, B.; Hou, S.; Shu, C. W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Math Comput, 54, 545-581, (1990) · Zbl 0695.65066
[29] Cockburn, B.; Lin, S. Y.; Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, J Comput Phys, 84, 90-113, (1989) · Zbl 0677.65093
[30] Cockburn, B.; Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math Comput, 52, 411-435, (1989) · Zbl 0662.65083
[31] Cockburn, B.; Shu, C. W., The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws, Math Modell Numer Anal, 25, 337-361, (1991) · Zbl 0732.65094
[32] Cockburn, B.; Shu, C. W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J Comput Phys, 141, 199-224, (1998) · Zbl 0920.65059
[33] Dahlburg, R. B.; Picone, J. M., Evolution of the orszag-Tang vortex system in a compressible medium. I. initial average subsonic flow, Phys Fluids B, 1, 2153-2171, (1989)
[34] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.-D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J Comput Phys, 175, 645-673, (2002) · Zbl 1059.76040
[35] Diot, S.; Clain, S.; Loubère, R., Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials, Comput Fluids, 64, 43-63, (2012) · Zbl 1365.76149
[36] Diot, S.; Loubère, R.; Clain, S., The MOOD method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems, Int J Numer Methods Fluids, 73, 362-392, (2013)
[37] Kuzmin, D., Hierarchical slope limiting in explicit and implicit discontinuous Galerkin methods, J Comput Phys, 257 Part B, 0, 1140-1162, (2014), [Physics-compatible numerical methods] · Zbl 1352.65355
[38] Dolejsi, V.; Feistauer, M.; Schwab, C., On some aspects of the discontinuous Galerkin finite element method for conservation laws, Math Comput Simul, 61, 3-6, 333-346, (2003) · Zbl 1013.65108
[39] Donat, R.; Marti, M. C.; Martnez-Gavara, A.; Mulet, P., Well-balanced adaptive mesh refinement for shallow water flows, J Comput Phys, 257 Part A, 0, 937-953, (2014) · Zbl 1349.76454
[40] Dumbser, M., Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier-Stokes equations, Comput Fluids, 39, 60-76, (2010) · Zbl 1242.76161
[41] Dumbser, M.; Balsara, D.; Toro, E. F.; Munz, C. D., A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes, J Comput Phys, 227, 8209-8253, (2008) · Zbl 1147.65075
[42] Dumbser, M.; Casulli, V., A staggered semi-implicit spectral discontinuous Galerkin scheme for the shallow water equations, Appl Math Comput, 219, 15, 8057-8077, (2013) · Zbl 1366.76050
[43] Dumbser, M.; Enaux, C.; Toro, E. F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, J Comput Phys, 227, 3971-4001, (2008) · Zbl 1142.65070
[44] Dumbser, M.; Hidalgo, A.; Zanotti, O., High order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems, Comput Methods Appl Mech Eng, 268, 359-387, (2014) · Zbl 1295.65088
[45] Dumbser, M.; Iben, U.; Ioriatti, M., An efficient semi-implicit finite volume method for axially symmetric compressible flows in compliant tubes, Appl Numer Math, 89, 24-44, (2015) · Zbl 1326.76070
[46] Dumbser, M.; Käser, M.; Toro, E. F., An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes V: local time stepping and \(p\)-adaptivity, Geophys J Int, 171, 695-717, (2007)
[47] Dumbser, M.; Munz, C. D., Building blocks for arbitrary high order discontinuous Galerkin schemes, J Sci Comput, 27, 215-230, (2006) · Zbl 1115.65100
[48] Dumbser, M.; Schwartzkopff, T.; Munz, C. D., Arbitrary high order finite volume schemes for linear wave propagation, (Computational science and high performance computing II, Notes on numerical fluid mechanics and multidisciplinary design (NNFM), (2006), Springer), 129-144
[49] Dumbser, M.; Toro, E. F., On universal osher-type schemes for general nonlinear hyperbolic conservation laws, Commun Comput Phys, 10, 635-671, (2011) · Zbl 1373.76125
[50] Dumbser, M.; Uuriintsetseg, A.; Zanotti, O., On arbitrary-Lagrangian-Eulerian one-step WENO schemes for stiff hyperbolic balance laws, Commun Comput Phys, 14, 2, 301-327, (2013), [cited By (since 1996)] · Zbl 1373.76126
[51] Dumbser, M.; Zanotti, O., Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations, J Comput Phys, 228, 6991-7006, (2009) · Zbl 1261.76028
[52] Dumbser, M.; Zanotti, O.; Hidalgo, A.; Balsara, D. S., ADER-WENO finite volume schemes with space-time adaptive mesh refinement, J Comput Phys, 248, 257-286, (2013) · Zbl 1349.76325
[53] Dumbser, M.; Zanotti, O.; Loubère, R.; Diot, S., A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J Comput Phys, 278, 47-75, (2014) · Zbl 1349.65448
[54] Fechter, S.; Munz, C. D., A discontinuous Galerkin based sharp-interface method to simulate three-dimensional compressible two-phase flow, Int J Numer Methods Fluids, (2015)
[55] Feistauer, M.; Dolejsi, V.; Kucera, V., On the discontinuous Galerkin method for the simulation of compressible flow with wide range of Mach numbers, Comput Visual Sci, 10, 1, 17-27, (2007)
[56] Feistauer, M.; Kucera, V.; Prokopová, J., Discontinuous Galerkin solution of compressible flow in time-dependent domains, Math Comput Simul, 80, 8, 1612-1623, (2010) · Zbl 1425.76212
[57] Le Floch, P.; Raviart, P. A., An asymptotic expansion for the solution of the generalized Riemann problem. part I: general theory, Annales de l’institut Henri Poincaré (C) Analyse non linéaire, 5, 179-207, (1988) · Zbl 0679.35064
[58] Gassner, G.; Dumbser, M.; Hindenlang, F.; Munz, C. D., Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors, J Comput Phys, 230, 4232-4247, (2011) · Zbl 1220.65122
[59] Gassner, G.; Kopriva, D. A., A comparison of the dispersion and dissipation errors of Gauss and Gauss-lobatto discontinuous Galerkin spectral element methods, SIAM J Sci Comput, 33, 5, 2560-2579, (2011) · Zbl 1255.65089
[60] Gassner, G.; Lörcher, F.; Munz, C. D., A discontinuous Galerkin scheme based on a space-time expansion II. viscous flow equations in multi dimensions, J Sci Comput, 34, 260-286, (2008) · Zbl 1218.76027
[61] Georgoulis, Emmanuil H.; Hall, Edward; Houston, Paul, Discontinuous Galerkin methods on hp-anisotropic meshes ii: a posteriori error analysis and adaptivity, Appl Numer Math, 59, 9, 2179-2194, (2009), [Second Chilean Workshop on Numerical Analysis of Partial Differential Equations (WONAPDE 2007)] · Zbl 1175.65127
[62] Godunov, S. K., Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics, Math USSR - Sbornik, 47, 271-306, (1959) · Zbl 0171.46204
[63] Goetz CR, Iske A. Approximate solutions of generalized Riemann problems for nonlinear systems of hyperbolic conservation laws. Math Comput http://dx.doi.org/10.1090/mcom/2970.
[64] Gottlieb, S.; Shu, C. W., Total variation diminishing Runge-Kutta schemes, Math Comput, 67, 73-85, (1998) · Zbl 0897.65058
[65] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order essentially non-oscillatory schemes, III, J Comput Phys, 71, 231-303, (1987) · Zbl 0652.65067
[66] Hartmann, R.; Houston, P., Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, J Comput Phys, 183, 508-532, (2002) · Zbl 1057.76033
[67] Hidalgo, A.; Dumbser, M., ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations, J Sci Comput, 48, 173-189, (2011) · Zbl 1221.65231
[68] Luo, H.; Baum, J. D.; Löhner, R., A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids, J Comput Phys, 225, 1, 686-713, (2007) · Zbl 1122.65089
[69] Houston, P.; Schwab, C.; Sli, E., Stabilized hp-finite element methods for first-order hyperbolic problems, SIAM J Numer Anal, 37, 5, 1618-1643, (2000), [cited By (since 1996)50] · Zbl 0957.65103
[70] Houston, P.; Schwab, C.; Sli, E., Discontinuous hp-finite element methods for advection-diffusion-reaction problems ∗, SIAM J Numer Anal, 39, 6, 2133-2163, (2002), [cited By (since 1996) 190] · Zbl 1015.65067
[71] Houston, P.; Sli, E., Hp-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems, SIAM J Sci Comput, 23, 4, 1226-1252, (2002), [cited By (since 1996) 40] · Zbl 1029.65130
[72] Ivan L, Groth CPT. High-order central ENO finite-volume scheme with adaptive mesh refinement for the advection-diffusion equation. Computational Fluid Dynamics 2008, 2009. p. 443-9.
[73] Ivan, L.; Groth, C. P.T., High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows, J Comput Phys, 257 Part A, 0, 830-862, (2014) · Zbl 1349.76341
[74] Jiang, G.; Shu, C. W., On a cell entropy inequality for discontinuous Galerkin methods, Math Comput, 62, 531-538, (1994) · Zbl 0801.65098
[75] Jiang, G.-S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J Comput Phys, 126, 202-228, (1996) · Zbl 0877.65065
[76] Jiang, G. S.; Wu, C. C., A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics, J Comput Phys, 150, 561-594, (1999) · Zbl 0937.76051
[77] Qiu, J.; Shu, C. W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case, J Comput Phys, 193, 1, 115-135, (2004) · Zbl 1039.65068
[78] Zhu, J.; Qiu, J.; Shu, C. W.; Dumbser, M., Runge-Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes, J Comput Phys, 227, 9, 4330-4353, (2008) · Zbl 1157.65453
[79] Zhu, C. W.; Shu, J.; Zhong, X.; Qiu, J., Runge Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes, J Comp Phys, 248, 200-220, (2013) · Zbl 1349.65501
[80] Khokhlov, A. M., Fully threaded tree algorithms for adaptive refinement fluid dynamics simulations, J Comput Phys, 143, 2, 519-543, (1998) · Zbl 0934.76057
[81] Kopera, M. A.; Giraldo, F. X., Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations, J Comput Phys, 275, 92-117, (2014) · Zbl 1349.76226
[82] Kopriva, D. A., Metric identities and the discontinuous spectral element method on curvilinear meshes, J Sci Comput, 26, 3, 301-327, (2006) · Zbl 1178.76269
[83] Kopriva, D. A.; Gassner, G., On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods, J Sci Comput, 44, 2, 136-155, (2010) · Zbl 1203.65199
[84] Krivodonova, L.; Qin, R., An analysis of the spectrum of the discontinuous Galerkin method, Appl Numer Math, 64, 1-18, (2013) · Zbl 1255.65166
[85] Kurganov, A.; Tadmor, E., Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers, Numer Methods Partial Differ Eq, 18, 584-608, (2002) · Zbl 1058.76046
[86] Leicht, T.; Hartmann, R., Anisotropic mesh refinement for discontinuous Galerkin methods in two-dimensional aerodynamic flow simulations, Int J Numer Methods Fluids, 56, 11, 2111-2138, (2008) · Zbl 1388.76142
[87] Liu, Y.; Vinokur, M.; Wang, Z. J., Spectral (finite) volume method for conservation laws on unstructured grids V: extension to three-dimensional systems, J Comput Phys, 212, 454-472, (2006) · Zbl 1085.65099
[88] Krivodonova, L., Limiters for high-order discontinuous Galerkin methods, J Comput Phys, 226, 879-896, (2007) · Zbl 1125.65091
[89] Löhner, R., An adaptive finite element scheme for transient problems in {CFD}, Comput Methods Appl Mech Eng, 61, 3, 323-338, (1987) · Zbl 0611.73079
[90] Lörcher, F.; Gassner, G.; Munz, C. D., A discontinuous Galerkin scheme based on a space-time expansion. I. inviscid compressible flow in one space dimension, J Sci Comput, 32, 175-199, (2007) · Zbl 1143.76047
[91] Loubère, R.; Dumbser, M.; Diot, S., A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws, Commun Comput Phys, 16, 718-763, (2014) · Zbl 1373.76137
[92] Lu, H.; Sun, Q., A straightforward hp-adaptivity strategy for shock-capturing with high-order discontinuous Galerkin methods, Adv Appl Math Mech, 6, 1, 135-144, (2014), [cited By (since 1996) 0]
[93] Luo, H.; Baum, J. D.; Löhner, R., A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids, J Comput Phys, 227, 8875-8893, (2008) · Zbl 1391.76350
[94] Montecinos, G.; Castro, C. E.; Dumbser, M.; Toro, E. F., Comparison of solvers for the generalized Riemann problem for hyperbolic systems with source terms, J Comput Phys, 231, 19, 6472-6494, (2012) · Zbl 1284.35268
[95] Orszag, S. A.; Tang, C. M., Small-scale structure of two-dimensional magnetohydrodynamic turbulence, J Fluid Mech, 90, 129, (1979)
[96] Pareschi, L.; Russo, G., Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J Sci Comput, 25, 1, 129, (2005) · Zbl 1203.65111
[97] Pareschi, L.; Russo, G., Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J Sci Comput, 25, 129-155, (2005) · Zbl 1203.65111
[98] Persson P-O, Peraire J. Sub-cell shock capturing for discontinuous Galerkin methods. AIAA Paper 2006-112, 2006.
[99] Picone, J. M.; Dahlburg, R. B., Evolution of the orszag-Tang vortex system in a compressible medium. II. supersonic flow, Phys Fluids B, 3, 29-44, (1991)
[100] Qiu, J.; Dumbser, M.; Shu, C. W., The discontinuous Galerkin method with Lax-Wendroff type time discretizations, Comput Methods Appl Mech Eng, 194, 4528-4543, (2005) · Zbl 1093.76038
[101] Qiu, J.; Shu, C. W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: two dimensional case, Comput Fluids, 34, 642-663, (2005) · Zbl 1134.65358
[102] Qiu, J.; Shu, C. W., Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J Sci Comput, 26, 907-929, (2005) · Zbl 1077.65109
[103] Radice, D.; Rezzolla, L., Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes, Phys Rev D, 84, 2, 024010, (2011)
[104] Biswas, R.; Devine, K. D.; Flaherty, J. E., Parallel, adaptive finite element methods for conservation laws, Appl Numer Math, 14, 255-283, (1994) · Zbl 0826.65084
[105] Reed WH, Hill TR. Triangular mesh methods for neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory; 1973.
[106] Rusanov, V. V., Calculation of interaction of non-steady shock waves with obstacles, J Comput Math Phys USSR, 1, 267-279, (1961)
[107] Shu CW. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic Conservation Laws, NASA/CR-97-206253 ICASE Report No.97-65, November 1997.
[108] Sonntag, M.; Munz, C. D., Shock capturing for discontinuous Galerkin methods using finite volume subcells, (Fuhrmann, J.; Ohlberger, M.; Rohde, C., Finite volumes for complex applications VII, (2014), Springer), 945-953 · Zbl 1426.76429
[109] Stroud, A. H., Approximate calculation of multiple integrals, (1971), Prentice-Hall Inc. Englewood Cliffs, New Jersey · Zbl 0379.65013
[110] Taube, A.; Dumbser, M.; Balsara, D.; Munz, C. D., Arbitrary high order discontinuous Galerkin schemes for the magnetohydrodynamic equations, J Sci Comput, 30, 441-464, (2007) · Zbl 1176.76075
[111] Tavelli, M.; Dumbser, M., A high order semi-implicit discontinuous Galerkin method for the two dimensional shallow water equations on staggered unstructured meshes, Appl Math Comput, 234, 623-644, (2014) · Zbl 1298.76120
[112] Tavelli, M.; Dumbser, M., A staggered arbitrary high order semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier-Stokes equations, Appl Math Comput, 248, 70-92, (2014) · Zbl 1338.76068
[113] Titarev, V. A.; Toro, E. F., ADER: arbitrary high order Godunov approach, J Sci Comput, 17, 1-4, 609-618, (2002) · Zbl 1024.76028
[114] Titarev, V. A.; Toro, E. F., Finite-volume WENO schemes for three-dimensional conservation laws, J Comput Phys, 201, 238-260, (2004) · Zbl 1059.65078
[115] Titarev, V. A.; Toro, E. F., ADER schemes for three-dimensional nonlinear hyperbolic systems, J Comput Phys, 204, 715-736, (2005) · Zbl 1060.65641
[116] Toro, E. F.; Titarev, V. A., Derivative Riemann solvers for systems of conservation laws and ADER methods, J Comput Phys, 212, 1, 150-165, (2006) · Zbl 1087.65590
[117] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics, (1999), Springer · Zbl 0923.76004
[118] Toro, E. F.; Millington, R. C.; M Nejad, L. A., Towards very high order Godunov schemes, (Toro, E. F., Godunov methods, Theory and applications, (2001), Kluwer/Plenum Academic Publishers), 905-938 · Zbl 0989.65094
[119] Toro, E. F.; Titarev, V. A., Solution of the generalized Riemann problem for advection-reaction equations, Proc Roy Soc London, 271-281, (2002) · Zbl 1019.35061
[120] Toth, Gabor, The \(\nabla \cdot b = 0\) constraint in shock-capturing magnetohydrodynamics codes, J Comput Phys, 161, 2, 605-652, (2000) · Zbl 0980.76051
[121] Tsai, C.-C.; Hou, T.-H.; Popinet, S.; Chao, Y. Y., Wind wave prediction of tropical cyclones by a quadtree-adaptive model, Coast Eng, 108-119, (2013)
[122] Wang, Z. J.; Liu, Y., Extension of the spectral volume method to high-order boundary representation, J Comput Phys, 211, 154-178, (2006) · Zbl 1161.76536
[123] Wang, Z. J.; Zhang, L.; Liu, Y., Spectral (finite) volume method for conservation laws on unstructured grids iv: extension to two-dimensional Euler equations, J Comput Phys, 194, 716-741, (2004) · Zbl 1039.65072
[124] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J Comput Phys, 54, 115-173, (1984) · Zbl 0573.76057
[125] Yang, M.; Wang, Z., A parameter-free generalized moment limiter for high-order methods on unstructured grids, Adv Appl Math Mech, (2009)
[126] Yu, Y.; Wu, D.; Xu, Y., Three dimensional discontinuous Galerkin methods for Euler equations on adaptive conforming meshes, Comput Phys Commun, 182, 9, 1771-1775, (2011) · Zbl 1290.76076
[127] Zanotti, O.; Dumbser, M., Numerical simulations of high lundquist number relativistic magnetic reconnection, Mon Not R Astron Soc, 418, 1004-1011, (2011)
[128] Zanotti, O.; Dumbser, M., A high order special relativistic hydrodynamic and magnetohydrodynamic code with space-time adaptive mesh refinement, Comput Phys Commun, 188, 110-127, (2015) · Zbl 1344.76058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.