×

Numerical analysis of flow-induced rotation of an S-shaped rotor. (English) Zbl 1415.76740

Summary: Flow-induced rotation of an S-shaped rotor is investigated using an adaptive numerical scheme based on a vortex particle method. The boundary integral equation with respect to Bernoulli’s function is solved using a panel method for obtaining the pressure distribution on the rotor surface which applies the torque to the rotor. The present work first addresses the validation of the scheme against the previous studies of a rotating circular cylinder. Then, we compute the automatic rotation start of an S-shaped rotor from a quiescent state for various values of the moment of inertia. The computed flow patterns where the rotor supplies (or is supplied with) the torque to (or from) the fluid are shown during one cycle of rotation. The vortex shedding from the tip of the advancing bucket is found to play a key role in generating positive torque on the rotor. A remarkable finding is the fact that, after the rotor reaches a stable rotation, the trajectory of the limit cycle in the present autonomous system accounts for the stable rotating movement of the rotor. Furthermore, the hydrodynamic scenario of the rotor automatically starting up from a quiescent state and entering the limit cycle is elucidated for various values of the moment of inertia and the initial angle of the rotor.

MSC:

76U05 General theory of rotating fluids
76D17 Viscous vortex flows
76M23 Vortex methods applied to problems in fluid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76M28 Particle methods and lattice-gas methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Afungchui, D., Kamoun, B. & Helali, A.2014Vortical structures in the wake of the Savonius wind turbine by the discrete vortex method. Renew. Energy69, 174-179.10.1016/j.renene.2014.03.038
[2] Badr, H. M. & Dennis, S. C. R.1985Time-dependent viscous flow past an impulsively started rotating and translating circular cylinder. J. Fluid Mech.158, 447-488.10.1017/S0022112085002725S0022112085002725 · Zbl 0582.76035
[3] Bar-Lev, M. & Yang, H. T.1975Initial flow field over an impulsively started circular cylinder. J. Fluid Mech.72, 625-647.10.1017/S0022112075003199S0022112075003199 · Zbl 0317.76018
[4] Beale, J. T. & Majda, A.1985High order accurate vortex methods with explicit velocity kernels. J. Comput. Phys.58, 188-208.10.1016/0021-9991(85)90176-7 · Zbl 0588.76037
[5] Cottet, G.-H. & Koumoutsakos, P. D.2000Vortex Methods: Theory and Practice. Cambridge University Press.10.1017/CBO9780511526442 · Zbl 1140.76002
[6] Cottet, G.-H. & Poncet, P.2003Advances in direct numerical simulations of 3D wall-bounded flows by vortex-in-cell methods. J. Comput. Phys.193, 136-158.10.1016/j.jcp.2003.08.025 · Zbl 1047.76092
[7] Degond, P. & Mas-Gallic, S.1989The weighted particle method for convection-diffusion equations, Part 1: the case of an isotropic viscosity, Part 2: the anisotropic case. Math. Comput.53, 485-525. · Zbl 0676.65121
[8] Fujisawa, N.1992On the torque mechanism of Savonius rotors. J. Wind Engng Ind. Aerodyn.40, 277-292.10.1016/0167-6105(92)90380-S
[9] Fujisawa, N.1996Velocity measurements and numerical calculations on flow fields in and around Savonius rotors. J. Wind Engng Ind. Aerodyn.59, 39-50.10.1016/0167-6105(94)00031-X
[10] Greengard, L. & Rokhlin, V.1987A fast algorithm for particle simulations. J. Comput. Phys.73, 325-350.10.1016/0021-9991(87)90140-9 · Zbl 0629.65005
[11] Jaohindy, P., Ennamiri, H., Garde, F. & Bastide, A.2014Numerical investigation of airflow through a Savonius rotor. Wind Energy17, 853-868.10.1002/we.1601
[12] Jaohindy, P., McTavish, S., Garde, F. & Bastide, A.2013An analysis of the transient forces acting on Savonius rotors with different aspect ratios. Renew. Energy55, 286-295.10.1016/j.renene.2012.12.045
[13] Kida, T., Sakate, H. & Nakajima, T.1997Pressure distribution obtained using two-dimensional vortex method. Trans. Japan Soc. Mech. Engrs B63 (606), 378-386.10.1299/kikaib.63.378
[14] Koumoutsakos, P.2005Multiscale flow simulations using particles. Annu. Rev. Fluid Mech.37, 457-487.10.1146/annurev.fluid.37.061903.175753 · Zbl 1117.76054
[15] Koumoutsakos, P. & Leonard, A.1995High-resolution simulations of the flow around an impulsively started circular cylinder using vortex methods. J. Fluid Mech.296, 1-38.10.1017/S0022112095002059 · Zbl 0849.76061
[16] Koumoutsakos, P., Leonard, A. & Pépin, F.1994Boundary conditions for viscous vortex methods. J. Comput. Phys.113, 52-61.10.1006/jcph.1994.1117 · Zbl 0808.76072
[17] Lugt, H. J.1983Autorotation. Annu. Rev. Fluid Mech.15, 123-147.10.1146/annurev.fl.15.010183.001011 · Zbl 0545.76062
[18] Nakajima, M., Iio, S. & Ikeda, T.2008Performance of double-step Savonius rotor for environmentally friendly hydraulic turbine. J. Fluid Sci. Technol.3, 410-419.10.1299/jfst.3.410
[19] Nasef, M. H., El-Askary, W. A., AbdEL-hamid, A. A. & Gad, H. E.2013Evaluation of Savonius rotor performance: static and dynamic studies. J. Wind Engng Ind. Aerodyn.123, 1-11.10.1016/j.jweia.2013.09.009
[20] Noca, F., Shiels, D. & Jeon, D.1997Measuring instantaneous fluid dynamic forces on bodies, using only velocity fields and their derivatives. J. Fluids Struct.11, 345-350.10.1006/jfls.1997.0081
[21] Noca, F., Shiels, D. & Jeon, D.1999A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives. J. Fluids Struct.13, 551-578.10.1006/jfls.1999.0219
[22] Nozu, T. & Tamura, T.1997Application of computational fluid technique with high accuracy and conservation property to the wind resistant problems of buildings and structures. Part 1. Estimations of numerical errors of the interpolation method and its accuracy for the prediction of flows around a rectangular cylinder at low Reynolds numbers. J. Struct. Constr. Engng AIJ494, 43-49.10.3130/aijs.62.43_1
[23] Ploumhans, P. & Winckelmans, G. S.2000Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry. J. Comput. Phys.165, 354-406.10.1006/jcph.2000.6614 · Zbl 1006.76068
[24] Roy, S. & Saha, U. K.2013Review on the numerical investigations into the design and development of Savonius wind rotors. Renew. Sustainable Energy Rev.24, 73-83.10.1016/j.rser.2013.03.060
[25] Saffman, P. G.1992Vortex Dynamics. Cambridge University Press. · Zbl 0777.76004
[26] Shaheen, M., El-Sayed, M. & Abdallah, S.2015Numerical study of two-bucket Savonius wind turbine cluster. J. Wind Engng Ind. Aerodyn.137, 78-89.10.1016/j.jweia.2014.12.002
[27] Takahashi, Y.1996Introduction to Modern Mathematics, vol. 5, pp. 115-120. Iwanami (in Japanese).
[28] Tian, W., Song, B., VanZwieten, J. H. & Pyakurel, P.2015Computational fluid dynamics prediction of a modified Savonius wind turbine with novel blade shapes. Energies8, 7915-7929.10.3390/en8087915
[29] Ueda, Y., Kida, T. & Iguchi, M.2013Steady approach of unsteady low-Reynolds-number flow past two rotating circular cylinders. J. Fluid Mech.736, 414-443.10.1017/jfm.2013.503S002211201300503X · Zbl 1294.76097
[30] Uhlman, J. S.1992 An integral equation formulation of the equation of motion of an incompressible fluid. Tech. Rep. 10086. Naval Undersea Warfare Center.
[31] Ushiyama, I., Nagai, H. & Shinoda, J.1986Experimentally determining the optimum design configuration for Savonius rotors. Trans. Japan Soc. Mech. Engrs B52 (480), 2973-2982.10.1299/kikaib.52.2973
[32] Williamson, C. H. K.1996Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech.28, 477-539.10.1146/annurev.fl.28.010196.002401
[33] Zhou, T. & Rempfer, D.2013Numerical study of detailed flow field and performance of Savonius wind turbines. Renew. Energy51, 373-381.10.1016/j.renene.2012.09.046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.