×

A modified multi-gene genetic programming approach for modelling true stress of dynamic strain aging regime of austenitic stainless steel 304. (English) Zbl 1293.74145

Summary: AISI steel 304 is used in nuclear reactors for the cladding of fuel rods. In the literature, various mathematical modelling methods such as support vector regression (SVR), artificial neural network (ANN) and multi-gene genetic programming (MGGP) have been applied to study the properties of this steel. Among these methods, MGGP possesses the ability to evolve the model structure and its coefficients. The model participating in the evolutionary stage of the MGGP algorithm is a weighted linear sum of several genes, with the weights determined by selecting the genes randomly and combining them using the least squares method to form a MGGP model. As a result, there is a possibility that a gene of lower performance can degrade the performance of the model. To counter this, a modified MGGP (M-MGGP) method is proposed and which introduces a new technique of stepwise regression for the selective combination of genes of only higher performance. The M-MGGP method is applied to the true stress value data obtained from tensile tests conducted on austenitic stainless steel 304 subjected to different strain rates and temperatures. The results show that the M-MGGP model is able to extrapolate the values of true stress more satisfactorily than those of the standardized MGGP, ANN and SVR models. The M-MGGP models are also smaller in size than those from MGGP. The results suggest that the M-MGGP method provides compact and accurate models that can be deployed by experts for efficiently studying the properties of the steel at elevated temperatures.

MSC:

74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74N05 Crystals in solids
92D99 Genetics and population dynamics

Software:

LS-SVMlab; GPTIPS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Armas A, Bettin O, Alvarez-Armas I, Rubiolo G (1988) Strain aging effects on the cyclic behavior of austenitic stainless steels. J Nucl Mater 155:644-649 · doi:10.1016/0022-3115(88)90388-1
[2] Armas A, Hereñú S, Alvarez-Armas I, Degallaix S, Condó A, Lovey F (2008) The influence of temperature on the cyclic behavior of aged and unaged super duplex stainless steels. Mater Sci Eng A 491:434-439 · doi:10.1016/j.msea.2008.02.028
[3] Gupta AK, Singh SK, Reddy S, Hariharan G (2012) Prediction of flow stress in dynamic strain aging regime of austenitic stainless steel 316 using artificial neural network. Mater Des 35:589-595 · doi:10.1016/j.matdes.2011.09.060
[4] Hong X, Mitchell R, Chen S, Harris CJ, Li K, Irwin G (2008) Model selection approaches for nonlinear system identification: a review. Int J Syst Sci 39:925-946 · Zbl 1233.93097 · doi:10.1080/00207720802083018
[5] Llanes L, Mateo A, Iturgoyen L, Anglada M (1996) Aging effects on the cyclic deformation mechanisms of a duplex stainless steel. Acta Mater 44:3967-3978 · doi:10.1016/S1359-6454(96)00045-6
[6] Peng K, Qian K, Chen W (2004) Effect of dynamic strain aging on high temperature properties of austenitic stainless steel. Mater Sci Eng A 379:372-377 · doi:10.1016/j.msea.2004.03.004
[7] Wang X, Li D (2003) Mechanical, electrochemical and tribological properties of nano-crystalline surface of 304 stainless steel. Wear 255:836-845 · doi:10.1016/S0043-1648(03)00055-3
[8] Lin Y, Chen X-M (2011) A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des 32:1733-1759 · doi:10.1016/j.matdes.2010.11.048
[9] Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th international symposium on ballistics, 1983. International Ballistics Committee, The Hague, pp 541-547
[10] Samantaray D, Mandal S, Bhaduri A (2009) A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel. Comput Mater Sci 47:568-576 · doi:10.1016/j.commatsci.2009.09.025
[11] Samantaray D, Mandal S, Bhaduri A (2011) A critical comparison of various data processing methods in simple uni-axial compression testing. Mater Des 32:2797-2802 · doi:10.1016/j.matdes.2011.01.007
[12] Samantaray D, Mandal S, Borah U, Bhaduri A, Sivaprasad P (2009) A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel. Mater Sci Eng A 526:1-6 · doi:10.1016/j.msea.2009.08.009
[13] Zener C, Hollomon J (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15:22-32 · doi:10.1063/1.1707363
[14] Zerilli FJ, Armstrong RW (1987) Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys 61:1816-1825 · doi:10.1063/1.338024
[15] Xiao Y-H, Guo C (2011) Constitutive modelling for high temperature behavior of 1Cr12Ni3Mo2VNbN martensitic steel. Mater Sci Eng A 528:5081-5087 · Zbl 1221.28016 · doi:10.1016/j.msea.2011.03.050
[16] Chiou S-T, Cheng W-C, Lee W-S (2005) Strain rate effects on the mechanical properties of a Fe-Mn-Al alloy under dynamic impact deformations. Mater Sci Eng A 392:156-162 · doi:10.1016/j.msea.2004.09.055
[17] He X, Yu Z, Lai X (2008) A method to predict flow stress considering dynamic recrystallization during hot deformation. Comput Mater Sci 44:760-764 · doi:10.1016/j.commatsci.2008.05.021
[18] Çaydaş U, Ekici S (2012) Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. J Intell Manuf 23:639-650 · doi:10.1007/s10845-010-0415-2
[19] Gupta AK (2010) Predictive modelling of turning operations using response surface methodology, artificial neural networks and support vector regression. Int J Prod Res 48:763-778 · doi:10.1080/00207540802452132
[20] Xu J, Zhang M, Wang Y (2010) Neural networks modelling and generalised predictive control for an autonomous underwater vehicle. Int J Model Identif Control 11:79-86 · doi:10.1504/IJMIC.2010.035282
[21] Yildiz AR (2013) Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. Inf Sci Int J 220:399-407
[22] Yildiz AR (2013) Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl Soft Comput 13(3):1433-1439 · doi:10.1016/j.asoc.2012.01.012
[23] Garg A, Vijayaraghavan V, Mahapatra SS, Tai K, Wong CH (2014) Performance evaluation of microbial fuel cell by artificial intelligence methods. Expert Syst Appl 41(4):1389-1399 · doi:10.1016/j.eswa.2013.08.038
[24] Mohammed AA et al (2013) Crack detection in a rotating shaft using artificial neural networks and PSD characterisation. Meccanica 1-12. doi:10.1007/s11012-013-9790-z
[25] Zapico-Valle JL et al (2013) Rotor crack identification based on neural networks and modal data. Meccanica 1-20. doi:10.1007/s11012-013-9795-7 · Zbl 1293.74350
[26] Raeisi E, Ziaei-Rad S (2013) The worst response of mistuned bladed disk system using neural network and genetic algorithm. Meccanica 48(2):367-379 · Zbl 1293.74350 · doi:10.1007/s11012-012-9607-5
[27] Fernandez A et al (2012) Regrasping objects during manipulation tasks by combining genetic algorithms and finger gaiting. Meccanica 47(4):939-950 · Zbl 1284.70014 · doi:10.1007/s11012-011-9486-1
[28] Litak G, Rusinek R (2012) Dynamics of a stainless steel turning process by statistical and recurrence analyses. Meccanica 47(6):1517-1526 · doi:10.1007/s11012-011-9534-x
[29] Kovacic M, Brezocnik M (2003) Genetic programming approach for surface quality prediction. Teh Vjesn 10:19-24
[30] Zhang Y, Bhattacharyya S (2004) Genetic programming in classifying large-scale data: an ensemble method. Inf Sci 163:85-101 · doi:10.1016/j.ins.2003.03.028
[31] Hiden HG (1998) Data-based modelling using genetic programming. PhD Thesis, Department of Chemical and Process Engineering, University of Newcastle
[32] Hinchliffe M, Hiden H, Mckay B, Willis M, Tham M, Barton G (1996) Modelling chemical process systems using a multi-gene genetic programming algorithm. Late breaking papers at the genetic programming 1996 conference, Stanford University, July 28-31, pp 56-65
[33] Garg A, Tai K (2012) Comparison of regression analysis, Artificial Neural Network and genetic programming in handling the multicollinearity problem. In: Proceedings of 2012 international conference on modelling, identification and control (ICMIC2012), Wuhan, China, 24-26 June 2012. IEEE, Piscataway, NJ, pp 353-358
[34] Garg A, Tai K (2013) Comparison of statistical and machine learning methods in modelling of data with multicollinearity. Int J Model Identif Control 18(4):295-312
[35] Garg A, Tai K (2011) A hybrid genetic programming-artificial neural network approach for modeling of vibratory finishing process. In: International proceedings of computer science and information technology, ICIIC 2011: international conference on information and intelligent computing, Hong Kong, 25-26 November 2011, vol 18, pp 14-19
[36] Garg A, Tai K, Lee CH, Savalani MM (2013) A hybrid m5′-genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of FDM process. J Intell Manuf. doi:10.1007/s10845-013-0734-1 · doi:10.1007/s10845-013-0734-1
[37] Garg A, Sriram S, Tai K (2013) Empirical analysis of model selection criteria for genetic programming in modeling of time series system. In: Proceedings of 2013 IEEE conference on computational intelligence for financial engineering and economics (CIFEr), Singapore, 16-19 April 2013, pp 84-88
[38] Garg A, Tai K (2013) Selection of a robust experimental design for the effective modeling of nonlinear systems using genetic programming. In: Proceedings of 2013 IEEE symposium series on computational intelligence and data mining (CIDM), Singapore, 16-19 April 2013, pp 293-298
[39] Garg A, Rachmawati L, Tai K (2013) Classification-driven model selection approach of genetic programming in modelling of turning process. Int J Adv Manuf Technol 69(5-8):1137-1151 · doi:10.1007/s00170-013-5103-x
[40] Garg A, Bhalerao Y, Tai K (2013) Review of empirical modeling techniques for modeling of turning process. Int J Model Identif Control 20(2):121-129 · doi:10.1504/IJMIC.2013.056184
[41] Garg A, Savalani MM, Tai K (2014) State-of-the-art in empirical modelling of rapid prototyping processes. Rapid Prototyp J (in press)
[42] Gupta AK, Krishnamurthy HN, Singh Y, Prasad KM, Singh SK (2012) Development of constitutive models for dynamic strain aging regime in austenitic stainless steel 304. Mater Des 45:616-627 · doi:10.1016/j.matdes.2012.09.041
[43] Koza JR (1994) Genetic programming II: automatic discovery of reusable programs. MIT, Cambridge · Zbl 0850.68160
[44] Garg A, Tai K (2012) Review of genetic programming in modeling of machining processes. In: Proceedings of 2012 international conference on modelling, identification and control (ICMIC2012), Wuhan, China, 24-26 June 2012. IEEE, pp 653-658
[45] Searson DP, Leahy DE, Willis MJ (2010) GPTIPS: an open source genetic programming toolbox for multigene symbolic regression. In: International multiconference of engineers and computer scientists 2010, vol 1, pp 77-80 · Zbl 1233.93097
[46] Hearst MA, Dumais S, Osman E, Platt J, Scholkopf B (1998) Support vector machines. Intell Syst Appl IEEE 13:18-28 · doi:10.1109/5254.708428
[47] Hua S, Sun Z (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17:721-728 · doi:10.1093/bioinformatics/17.8.721
[48] Kecman V (2001) Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. MIT Press, Cambridge · Zbl 0994.68109
[49] Byvatov E, Schneider G (2003) Support vector machine applications in bioinformatics. Appl Bioinform 2:67
[50] Pelckmans K, Suykens JAK, Vangestel T, De Brabanter J, Lukas L, Hamers B et al (2002) LS-SVMlab: a MATLAB/C toolbox for least squares support vector machines. Tutorial. KULeuven-ESA, Leuven
[51] Salgado DR, Alonso FJ (2007) An approach based on current and sound signals for in-process tool wear monitoring. Int J Mach Tools Manuf 47:2140-2152 · doi:10.1016/j.ijmachtools.2007.04.013
[52] Salgado DR, Alonso FJ, Cambero I, Marcelo A (2009) In-process surface roughness prediction system using cutting vibrations in turning. Int J Adv Manuf Technol 43:40-51 · doi:10.1007/s00170-008-1698-8
[53] Gou Z, Fyfe C (2004) A canonical correlation neural network for multicollinearity and functional data. Neural Netw 17:285-293 · Zbl 1076.68550 · doi:10.1016/j.neunet.2003.07.002
[54] Lucignano C, Montanari R, Tagliaferri V, Ucciardello N (2010) Artificial neural networks to optimize the extrusion of an aluminium alloy. J Intell Manuf 21:569-574 · doi:10.1007/s10845-009-0239-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.