×

Infinitely many positive solutions for a nonlinear field equation with super-critical growth. (English) Zbl 1342.35114

In the paper under review, the authors consider the following nonlinear field equation with super-critical growth: \[ \begin{aligned} -\Delta u+\lambda u=Q(y)u^{(N+2)/(N-2)}, \quad u>0 \quad & \text{in } \mathbb{R}^{N+m}, \\ u(y)\to 0 \quad & \text{as } |y| \to +\infty, \end{aligned} \] where \(m \geq 1\), \(\lambda \geq 0\), and \(Q\) is a bounded positive function which satisfies some symmetry conditions. The exponent \((N+2)/(N-2)\) is super-critical in \(\mathbb{R}^{N+m}\).
By constructing solutions that concentrate at a large number of \(m\)-dimensional manifolds, the authors prove the existence of infinitely many positive solutions for the considered problem.

MSC:

35J61 Semilinear elliptic equations
35B33 Critical exponents in context of PDEs
35B25 Singular perturbations in context of PDEs
35B09 Positive solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/j.jde.2013.02.015 · Zbl 1288.35240 · doi:10.1016/j.jde.2013.02.015
[2] DOI: 10.1006/jfan.1999.3390 · Zbl 0938.35056 · doi:10.1006/jfan.1999.3390
[3] DOI: 10.1016/0022-1236(91)90026-2 · Zbl 0722.53032 · doi:10.1016/0022-1236(91)90026-2
[4] Bahri, On a min-max procedure for the existence of a positive solution for certain scalar field equations in \(R^N\), Rev. Mat. Iberoamericana 6 pp 1– (1990) · Zbl 0731.35036 · doi:10.4171/RMI/92
[5] DOI: 10.1016/S0294-1449(97)80142-4 · Zbl 0883.35045 · doi:10.1016/S0294-1449(97)80142-4
[6] Bianchi, The scalar curvature equation on \(R^N\) and \(S^N\), Adv. Differential Equations 1 pp 857– (1996)
[7] DOI: 10.1016/0362-546X(90)90152-7 · Zbl 0729.35049 · doi:10.1016/0362-546X(90)90152-7
[8] DOI: 10.1007/s00526-002-0137-1 · Zbl 1148.35319 · doi:10.1007/s00526-002-0137-1
[9] DOI: 10.1007/BF01191617 · Zbl 0822.35043 · doi:10.1007/BF01191617
[10] DOI: 10.1215/S0012-7094-91-06402-1 · Zbl 0739.53027 · doi:10.1215/S0012-7094-91-06402-1
[11] Chen, Estimate of the conformal scalar curvature equation via the method of moving planes, II, J. Differential Geom. 49 pp 115– (1998) · Zbl 0961.35047 · doi:10.4310/jdg/1214460938
[12] Chen, Prescribing scalar curvature on \(S^N\) . I. A priori estimates, J. Differential Geom. 57 pp 67– (2001) · Zbl 1043.53028 · doi:10.4310/jdg/1090348090
[13] DOI: 10.1002/cpa.3160451002 · Zbl 0785.35029 · doi:10.1002/cpa.3160451002
[14] DOI: 10.1112/S0024609303001942 · Zbl 1109.35334 · doi:10.1112/S0024609303001942
[15] DOI: 10.1007/s005260100142 · Zbl 1142.35421 · doi:10.1007/s005260100142
[16] DOI: 10.1002/cpa.20135 · Zbl 1123.35003 · doi:10.1002/cpa.20135
[17] del Pino, Bubbling along boundary geodesics near the second critical exponents, J. Eur. Math. Soc. (JEMS) 12 pp 1553– (2010) · Zbl 1204.35090 · doi:10.4171/JEMS/241
[18] DOI: 10.4171/JEMS/473 · Zbl 1310.35136 · doi:10.4171/JEMS/473
[19] DOI: 10.1016/j.anihpc.2006.03.001 · Zbl 1387.35291 · doi:10.1016/j.anihpc.2006.03.001
[20] DOI: 10.1007/BF00282336 · Zbl 0616.35029 · doi:10.1007/BF00282336
[21] DOI: 10.1002/cpa.3160460302 · Zbl 0799.35068 · doi:10.1002/cpa.3160460302
[22] DOI: 10.1006/jfan.1993.1138 · Zbl 0790.53040 · doi:10.1006/jfan.1993.1138
[23] DOI: 10.1006/jdeq.1995.1115 · Zbl 0827.53039 · doi:10.1006/jdeq.1995.1115
[24] Li, Prescribed scalar curvature on Sn and related problems. II. Existence and compactness, Comm. Pure Appl. Math. 49 pp 541– (1996) · Zbl 0849.53031 · doi:10.1002/(SICI)1097-0312(199606)49:6<541::AID-CPA1>3.0.CO;2-A
[25] DOI: 10.1215/S0012-7094-88-05738-9 · Zbl 0677.14011 · doi:10.1215/S0012-7094-88-05738-9
[26] Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 pp 109– (1984) · Zbl 0541.49009 · doi:10.1016/S0294-1449(16)30428-0
[27] Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 pp 223– (1984) · Zbl 0704.49004 · doi:10.1016/S0294-1449(16)30422-X
[28] DOI: 10.1007/s00039-005-0542-7 · Zbl 1087.35010 · doi:10.1007/s00039-005-0542-7
[29] DOI: 10.1002/cpa.10049 · Zbl 1124.35305 · doi:10.1002/cpa.10049
[30] DOI: 10.1215/S0012-7094-04-12414-5 · Zbl 1065.35037 · doi:10.1215/S0012-7094-04-12414-5
[31] Passaseo, New nonexistence results for elliptic equations with supercritical nonlinearity, Differ. Integral Equ. 8 pp 577– (1995) · Zbl 0821.35056
[32] DOI: 10.1215/S0012-7094-98-09213-4 · Zbl 0943.35034 · doi:10.1215/S0012-7094-98-09213-4
[33] DOI: 10.1007/BF01322307 · Zbl 0843.53037 · doi:10.1007/BF01322307
[34] DOI: 10.1090/S0002-9947-10-04955-X · Zbl 1204.35093 · doi:10.1090/S0002-9947-10-04955-X
[35] DOI: 10.1112/plms/pdq051 · Zbl 1236.35077 · doi:10.1112/plms/pdq051
[36] DOI: 10.1016/j.jfa.2009.12.008 · Zbl 1209.53028 · doi:10.1016/j.jfa.2009.12.008
[37] Wei, On a stronger Lazer–McKenna conjecture for Ambrosetti–Prodi type problems, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 pp 423– (2010) · Zbl 1204.35094
[38] DOI: 10.1016/j.matpur.2011.01.006 · Zbl 1253.31008 · doi:10.1016/j.matpur.2011.01.006
[39] DOI: 10.1016/S0362-546X(98)00213-2 · Zbl 0956.35043 · doi:10.1016/S0362-546X(98)00213-2
[40] DOI: 10.1006/jdeq.1999.3718 · Zbl 0954.35058 · doi:10.1006/jdeq.1999.3718
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.