×

Optical solitons in gas-filled, hollow-core photonic crystal fibers with inter-modal dispersion and self-steepening. (English) Zbl 1356.78103

Summary: The optical solitons in a gas-filled, hollow-core photonic crystal fiber with higher-order dispersion, inter-modal dispersion, Raman effect, self-steepening, detuning, external potential, and dissipation have been studied theoretically by employing the Bäcklund transformation and Hirota’s direct method. The bilinear forms and exact optical one-soliton solutions to the nonlinear optical transmission equation are obtained under the constraint conditions. The influence of correlation coefficients on the width, amplitude, and phase of optical solitons are analyzed. These results have important application features in optical soliton control in gas-filled, hollow-core photonic crystal fibers.

MSC:

78A48 Composite media; random media in optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1364/OL.35.002922 · doi:10.1364/OL.35.002922
[2] DOI: 10.1364/OPEX.13.005694 · doi:10.1364/OPEX.13.005694
[3] DOI: 10.1364/OPEX.13.010475 · doi:10.1364/OPEX.13.010475
[4] DOI: 10.1134/S1054660X06060107 · doi:10.1134/S1054660X06060107
[5] DOI: 10.1209/0295-5075/100/64003 · doi:10.1209/0295-5075/100/64003
[6] DOI: 10.1016/j.optlastec.2007.10.002 · doi:10.1016/j.optlastec.2007.10.002
[7] DOI: 10.1016/j.cnsns.2012.12.028 · Zbl 1304.35654 · doi:10.1016/j.cnsns.2012.12.028
[8] DOI: 10.1080/09500340.2011.621036 · Zbl 1356.35076 · doi:10.1080/09500340.2011.621036
[9] DOI: 10.1016/j.optlastec.2011.07.001 · doi:10.1016/j.optlastec.2011.07.001
[10] DOI: 10.1016/j.optlastec.2013.03.006 · doi:10.1016/j.optlastec.2013.03.006
[11] DOI: 10.1016/j.cnsns.2005.11.006 · Zbl 1111.35072 · doi:10.1016/j.cnsns.2005.11.006
[12] DOI: 10.1016/j.amc.2010.03.047 · Zbl 1200.65084 · doi:10.1016/j.amc.2010.03.047
[13] DOI: 10.1002/mma.1414 · Zbl 1219.35287 · doi:10.1002/mma.1414
[14] DOI: 10.1016/j.chaos.2009.02.035 · Zbl 1198.81104 · doi:10.1016/j.chaos.2009.02.035
[15] DOI: 10.1016/j.optlastec.2012.06.017 · doi:10.1016/j.optlastec.2012.06.017
[16] DOI: 10.1080/09500340.2011.620185 · Zbl 06685639 · doi:10.1080/09500340.2011.620185
[17] DOI: 10.1016/j.physleta.2006.10.077 · Zbl 1197.81129 · doi:10.1016/j.physleta.2006.10.077
[18] DOI: 10.1080/17455030.2011.582892 · Zbl 1274.78003 · doi:10.1080/17455030.2011.582892
[19] DOI: 10.1201/9781420011401 · Zbl 1156.78001 · doi:10.1201/9781420011401
[20] Girgis L., Opt. Appl. 42 pp 447– (2012)
[21] DOI: 10.1016/j.cnsns.2010.01.018 · Zbl 1222.78040 · doi:10.1016/j.cnsns.2010.01.018
[22] DOI: 10.1016/S1068-5200(03)00044-0 · doi:10.1016/S1068-5200(03)00044-0
[23] Biswas A., Phys. Lett. 1 pp 79– (2012)
[24] Biswas A., Adv. Mater. 14 pp 571– (2012)
[25] DOI: 10.1016/j.cnsns.2009.09.029 · Zbl 1222.78044 · doi:10.1016/j.cnsns.2009.09.029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.