×

Analysis and computations of oscillating crack propagation in a heated strip. (English) Zbl 1282.74079

Summary: This paper presents a computational analysis and several simulations of an existing experiment, which deals with a quasi-static thermal crack propagation in a glass plate. The experimental observation was that a straight or oscillatory crack propagation occurred depending on the plate width and thermal loading. The goal here is to simulate this experiment with the recent numerical tool such as XFEM. First, the analysis of the settings of the experiment is developed by providing the computed energy release rate of the crack for a wide range of experiment settings parameters. Second, different crack propagations are simulated, and show a good agreement with the experimental observation of straight or oscillatory paths. Third, a study of the results given by the fracture criteria (maximum hoop stress and Local Symmetry criteria) is also presented for this particular experiment in order to evaluate their differences.

MSC:

74R10 Brittle fracture
74F05 Thermal effects in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adda-Bedia M, Arias R, Ben Amar M, Lund F (1999) Generalized Griffith criterion for dynamic fracture and the stability of crack motion at high velocities. Phys Rev E 60(2): 2366–2376 · doi:10.1103/PhysRevE.60.2366
[2] Adda-Bedia M, Pomeau Y (1995) Crack instabilities of a heated glass strip. Phys Rev E 52: 4105 · doi:10.1103/PhysRevE.52.4105
[3] Amestoy M, Leblond JB (1992) Crack paths in plane situations–II. Detailed form of the expansion of the stress intensity factors. Int J Solids Struct 29(4): 465–501 · Zbl 0755.73072 · doi:10.1016/0020-7683(92)90210-K
[4] Attigui M, Petit C (1997) Mixed-mode separation in dynamic fracture mechanics : New path independent integrals. Int J Fract 84(1): 19–36 · doi:10.1023/A:1007358701493
[5] Bahr HA, Fischer G, Weiss HJ (1986) Thermal-shock crack patterns explained by single and multiple crack propagation. J Mater Sci 21(8): 2716–2720 · doi:10.1007/BF00551478
[6] Bahr HA, Gerbatsch A, Bahr U, Weiss HJ (1995) Oscillatory instability in thermal cracking: a first-order phase-transition phenomenon. Phys Rev E 52(1): 240–243 · doi:10.1103/PhysRevE.52.240
[7] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5): 601–620 · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[8] Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, Chichester · Zbl 0959.74001
[9] Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50(4): 993–1013 · Zbl 0981.74062 · doi:10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
[10] Buckingham E (1915) The principle of similitude. Nature 96(3): 396–397 · JFM 45.0949.03 · doi:10.1038/096396d0
[11] Corson F, Adda-Bedia M, Henry H, Katzav E (2009) Thermal fracture as a framework for quasi-static crack propagation. Int J Fract 158: 1–14 · Zbl 1293.74372 · doi:10.1007/s10704-009-9361-4
[12] Cotterell B, Rice JR (1980) Slightly curved or kinked cracks. Int J Fract 16(2): 155–169 · doi:10.1007/BF00012619
[13] Deegan RD, Chheda S, Patel L, Marder M, Swinney HL, Kim J, de Lozanne A (2003) Wavy and rough cracks in silicon. Phys Rev E 67(6): 66209 · doi:10.1103/PhysRevE.67.066209
[14] Erdogan F, Sih GC (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85: 519–527 · doi:10.1115/1.3656897
[15] Ferney BD, De Vary MR, Hsia KJ, Needleman A (1999) Oscillatory crack growth in glass. Scripta materialia 41(3): 275–281 · doi:10.1016/S1359-6462(99)00161-X
[16] Freund LB (1972) Crack Propagation in an elastic solid subjected to general loading. Pt. 1. Constant rate of extension. J Mech Phys Solids 20(3): 129–140 · Zbl 0237.73099 · doi:10.1016/0022-5096(72)90006-3
[17] Gol’dstein RV, Salganik RL (1974) Brittle fracture of solids with arbitrary cracks. Int J Fract 10(4): 507–523 · doi:10.1007/BF00155254
[18] Griffith AA (1921) The phenomena of rupture and flow in solids. Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, pp 163–198
[19] Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57(2): 342–368 · Zbl 1421.74089 · doi:10.1016/j.jmps.2008.10.012
[20] Katzav E, Adda-Bedia M, Arias R (2007) Theory of dynamic crack branching in brittle materials. Int J Fract 143(3): 245–271 · Zbl 1197.74111 · doi:10.1007/s10704-007-9061-x
[21] Katzav E, Adda-Bedia M, Derrida B (2007) Fracture surfaces of heterogeneous materials: a 2D solvable model. EPL (Europhys Lett) 78: 46006 · Zbl 1244.74120 · doi:10.1209/0295-5075/78/46006
[22] Kilic B, Madenci E (2009) Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int J Fract 156(2): 165–177 · Zbl 1273.74455 · doi:10.1007/s10704-009-9355-2
[23] Marder M (1994) Instability of a crack in a heated strip. Phys Rev E 49(1): 51–54 · doi:10.1103/PhysRevE.49.R51
[24] Menouillard T, Elguedj T, Combescure A (2006) Mixed mode stress intensity factors for graded materials. Int J Solids Struct 43: 1946–1959 · Zbl 1121.74371 · doi:10.1016/j.ijsolstr.2005.06.021
[25] Menouillard T, Réthoré J, Combescure A, Bung H (2006) Efficient explicit time stepping for the eXtended Finite Element Method (X-FEM). Int J Numer Methods Eng 68: 911–939 · Zbl 1128.74045 · doi:10.1002/nme.1718
[26] Menouillard T, Réthoré J, Moës N, Combescure A, Bung H (2008) Mass lumping strategies for X-FEM explicit dynamics: application to crack propagation. Int J Numer Methods Eng 74(3): 447–474 · Zbl 1159.74432 · doi:10.1002/nme.2180
[27] Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1): 131–150 · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[28] Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54: 525 · Zbl 0626.73010 · doi:10.1115/1.3173064
[29] Pham VB, Bahr HA, Bahr U, Balke H, Weiss HJ (2008) Global bifurcation criterion for oscillatory crack path instability. Phys Rev E 77(6): 66114 · doi:10.1103/PhysRevE.77.066114
[30] Pla O (1996) Modelling fracture driven by a thermal gradient. Model Simul Mater Sci Eng 4(2): 193–202 · doi:10.1088/0965-0393/4/2/006
[31] Reddy KPR, Fontana EH, Helfinstine JD (1988) Fracture toughness measurement of glass and ceramic materials using chevron-notched specimens. J Am Ceram Soc 71(6): 310–313 · doi:10.1111/j.1151-2916.1988.tb05911.x
[32] Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by cracks and notches. J Appl Mech (Trans ASME) 35: 379–386 · doi:10.1115/1.3601206
[33] Ronsin O, Heslot F, Perrin B (1995) Experimental study of quasistatic brittle crack propagation. Phys Rev Lett 75(12): 2352–2355 · doi:10.1103/PhysRevLett.75.2352
[34] Ronsin O, Perrin B (1997) Multi-fracture propagation in a directional crack growth experiment. Europhys Lett 38(6): 435–440 · doi:10.1209/epl/i1997-00264-2
[35] Ronsin O, Perrin B (1998) Dynamics of quasistatic directional crack growth. Phys Rev E 58(6): 7878–7886 · doi:10.1103/PhysRevE.58.7878
[36] Sasa S, Sekimoto K, Nakanishi H (1994) Oscillatory instability of crack propagations in quasistatic fracture. Phys Rev E 50(3): 1733–1736 · doi:10.1103/PhysRevE.50.R1733
[37] Yang B, Ravi-Chandar K (2001) Crack path instabilities in a quenched glass plate. J Mech Phys Solids 49(1): 91–130 · Zbl 1012.74541 · doi:10.1016/S0022-5096(00)00022-3
[38] Yoneyama S, Sakaue K, Kikuta H, Takashi M (2008) Observation of stress field around an oscillating crack tip in a quenched thin glass plate. Exp Mech 48(3): 367–374 · doi:10.1007/s11340-007-9078-0
[39] Yuse A, Sano M (1993) Transition between crack patterns in quenched glass plates. Nature 362: 329–331 · doi:10.1038/362329a0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.