×

zbMATH — the first resource for mathematics

Augmented quasigroups and character algebras. (English) Zbl 07167267
Summary: The conjugacy classes of groups and quasigroups form association schemes, in which the relation products are defined by collapsing group or quasigroup multiplications. In previous work, sharp transitivity was used to identify association schemes, such as certain Johnson schemes, which cannot appear as quasigroup schemes. Thus quasigroup schemes only constitute a fragment of the full set of all association schemes. Nevertheless, the current paper shows that every association scheme is in fact obtained by collapsing a quasigroup multiplication. In a second application of a similar technique, character quasigroups are constructed for each finite group, as analogues of the character groups of abelian groups, to encode the multiplicative structure of group characters. As infrastructure for these and related results, three key unifying concepts in compact closed categories are established: augmented comagmas, augmented magmas, and augmented quasigroups, the latter serving to capture such diverse structures as groups and Heyting algebras.
MSC:
20N05 Loops, quasigroups
05E30 Association schemes, strongly regular graphs
05E10 Combinatorial aspects of representation theory
18D15 Closed categories (closed monoidal and Cartesian closed categories, etc.)
20C15 Ordinary representations and characters
20N20 Hypergroups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baer, R., Nets and groups I, Trans. Am. Math. Soc., 46, 110-141 (1939) · JFM 65.0819.02
[2] Bannai, E., Association schemes and fusion algebras (an introduction), J. Algebraic Comb., 2, 327-344 (1993) · Zbl 0790.05098
[3] Bannai, E.; Ito, T., Algebraic Combinatorics (1984), Benjamin-Cummings: Benjamin-Cummings Menlo Park, CA · Zbl 0555.05019
[4] Blau, H. I., Table algebras, Eur. J. Comb., 30, 1426-1455 (2009) · Zbl 1229.05291
[5] Comer, S. D., Hyperstructures associated with character algebras and color schemes, (New Frontiers in Hyperstructures. New Frontiers in Hyperstructures, Molise, 1995 (1996), Hadronic Press: Hadronic Press Palm Harbor, FL), 49-66 · Zbl 0887.20039
[6] Day, B. J., Note on compact closed categories, J. Aust. Math. Soc., 24, 309-311 (1977) · Zbl 0397.18008
[7] Frobenius, G., Über Gruppenharaktere, (Ges Abh. III (1896), Sitzungsber. Preuss. Akad. Wiss.: Sitzungsber. Preuss. Akad. Wiss. Berlin), 985-1021, Ges Abh. III, 1-37
[8] Hilton, A. J.W., Outlines of Latin squares, (Colbourn, C. J.; Mathon, R. A., Combinatorial Design Theory, North-Holland Math. Stud., vol. 149. Combinatorial Design Theory, North-Holland Math. Stud., vol. 149, Ann. Discrete Math., vol. 34 (1987), North-Holland: North-Holland Amsterdam), 225-241 · Zbl 0631.05009
[9] Hilton, A. J.W.; Wojciechowski, J., Weighted quasigroups, (Walker, K., Surveys in Combinatorics. Surveys in Combinatorics, 1993, Keele. Surveys in Combinatorics. Surveys in Combinatorics, 1993, Keele, London Math. Soc. Lecture Note Ser., vol. 187 (1993), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 137-171 · Zbl 0788.05008
[10] Hirasaka, M.; Muzychuk, M.; Zieschang, P.-H., A generalization of Sylow’s theorems on finite groups to association schemes, Math. Z., 241, 665-672 (2002) · Zbl 1010.05082
[11] Hoheisel, G., Über Charaktere, Monatshefte Math. Phys., 48, 448-456 (1939) · JFM 65.1121.01
[12] Im, B.; Ryu, J.-Y.; Smith, J. D.H., Sharply transitive sets in quasigroup actions, J. Algebraic Comb., 33, 81-93 (2011) · Zbl 1214.20062
[13] Jay, C. B., Languages for monoidal categories, J. Pure Appl. Algebra, 59, 61-85 (1989) · Zbl 0693.18003
[14] Jipsen, P.; Kinyon, M., Nonassociative right hoops, Algebra Univers., 80, Article 47 pp. (2019) · Zbl 07123189
[15] Johnson, K. W.; Smith, J. D.H., Characters of finite quasigroups, Eur. J. Comb., 5, 43-50 (1984) · Zbl 0537.20042
[16] Johnson, K. W.; Smith, J. D.H.; Song, S. Y., Characters of finite quasigroup VI: critical examples and doubletons, Eur. J. Comb., 11, 267-275 (1990) · Zbl 0704.20056
[17] Johnstone, P. T., Stone Spaces (1982), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0499.54001
[18] Kawada, Y., Über den Dualitätssatz der Charaktere nichtkommutativer Gruppen, Proc. Phys. Math. Soc. Jpn., 24, 97-109 (1942) · Zbl 0063.03172
[19] Kelly, G. M.; Laplaza, M. L., Coherence for compact closed categories, J. Pure Appl. Algebra, 19, 193-213 (1980) · Zbl 0447.18005
[20] Kinyon, M. K.; Smith, J. D.H.; Vojtěchovský, P., Sylow theory for quasigroups II: sectional action, J. Comb. Des., 25, 159-184 (2017) · Zbl 1373.20087
[21] Lee, H.-Y.; Im, B.; Smith, J. D.H., Stochastic tensors and approximate symmetry, Discrete Math., 340, 1335-1350 (2017) · Zbl 1369.05027
[22] Ljubič, Ju. I., Algebraic methods in evolutionary genetics, Biom. J., 20, 511-529 (1978) · Zbl 0401.92010
[23] Majid, S., A Quantum Groups Primer (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1037.17014
[24] Marty, F., Sur les groupes et hypergroupes attachés à une fraction rationnelle, Ann. Sci. Éc. Norm. Supér., 53, 83-123 (1936) · JFM 62.0666.03
[25] Reed, M. L., Algebraic structure of genetic inheritance, Bull. Am. Math. Soc., 34, 107-130 (1997) · Zbl 0876.17040
[26] Romanowska, A. B.; Smith, J. D.H., Diagrammatic duality, (Topology, Algebra and Categories in Logic. Topology, Algebra and Categories in Logic, Prague (2017)) · Zbl 06935925
[27] Serre, J.-P., Linear Representations of Finite Groups (1977), Springer: Springer New York, NY
[28] Smith, J. D.H., An Introduction to Quasigroups and Their Representations (2007), Chapman and Hall/CRC: Chapman and Hall/CRC Boca Raton, FL · Zbl 1122.20035
[29] Smith, J. D.H., Sylow theory for quasigroups, J. Comb. Des., 23, 115-133 (2015) · Zbl 1331.20076
[30] Smith, J. D.H.; Romanowska, A. B., Post-Modern Algebra (1999), Wiley: Wiley New York, NY · Zbl 0946.00001
[31] Snaith, V. P., Explicit Brauer Induction (1994), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0991.20005
[32] Tahan, M.a.; Davvaz, B., Algebraic hyperstructures associated to biological inheritance, Math. Biosci., 285, 112-118 (2017) · Zbl 1361.92050
[33] Wall, H. S., Hypergroups, Am. J. Math., 59, 77-98 (1937) · JFM 63.0063.01
[34] de Werra, D., A few remarks on chromatic scheduling, (Roy, B., Combinatorial Programming: Methods and Applications (1975), Reidel: Reidel Dordrecht), 337-342
[35] Wörz-Buzekros, A., Algebras in Genetics (1980), Springer: Springer Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.