Weak solvability via bipotential method for contact models with nonmonotone boundary conditions. (English) Zbl 1327.74010

Summary: We consider a general mathematical model which describes the contact between a body and a foundation, under the small deformations hypothesis. The behavior of the material is modeled by a monotone constitutive law, while on the potential contact zone nonmonotone boundary conditions are imposed. We propose a variational formulation in terms of bipotentials, whose unknown is a pair consisting of the displacement field and the Cauchy stress field. The existence of weak solutions is proved using a recent result due to Costea and Varga (Topol Methods Nonlinear Anal 41:39-67, 2013) concerning the solvability of nonlinear hemivariational inequality systems.


74A20 Theory of constitutive functions in solid mechanics
74M15 Contact in solid mechanics
49J40 Variational inequalities
49J53 Set-valued and variational analysis
35M87 Unilateral problems for mixed-type systems of PDEs and systems of variational inequalities with partial differential operators of mixed type
Full Text: DOI


[1] Bodovillé, G.; Saxcé, G., Plasticity with non linear kinematic hardening: modelling and shakedown analysis by the bipotential approach, Eur. J. Mech. A Solids, 20, 99-112, (2001) · Zbl 0997.74010
[2] Buliga, M.; Saxcé, G.; Vallée, C., Non-maximal cyclically monotone graphs and construction of a bipotential for the coulomb’s dry friction law, J. Convex Anal., 17, 81-94, (2010) · Zbl 1186.49010
[3] Buliga, M.; Saxcé, G.; Vallée, C., Bipotentials for non-monotone multivalued operators: fundamental results and applications, Acta Appl. Math., 110, 955-972, (2010) · Zbl 1217.49019
[4] Buliga, M.; Saxcé, G.; Vallée, C., Blurred cyclically monotone sets and bipotentials, Anal. Appl., 8, 323-336, (2010) · Zbl 1207.49019
[5] Buliga, M.; Saxcé, G.; Vallée, C., A variational formulation for constitutive laws described by bipotentials, Math. Mech. Solids, 18, 78-90, (2013)
[6] Clarke F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983) · Zbl 0582.49001
[7] Costea, N.; Matei, A., Weak solutions for nonlinear antiplane problems leading to hemivariational inequalities, Nonlinear Anal., 72, 3669-3680, (2010) · Zbl 1379.74018
[8] Costea, N.; Matei, A., Contact models leading to variational-hemivariational inequalities, J. Math. Anal. Appl., 386, 647-660, (2012) · Zbl 1248.49017
[9] Costea, N.; Varga, C., Systems of nonlinear hemivariational inequalities and applications, Topol. Methods Nonlinear Anal., 41, 39-67, (2013) · Zbl 1290.47064
[10] Fortin, J.; Saxcé, G., Modélisation numérique des milieux granulaires par l’approche du bipotentiel, C. R. Acad. Sci. Sér. IIB-Mech., 327, 721-724, (1999) · Zbl 0947.74077
[11] Goeleven D., Motreanu D., Dumont Y., Rochdi M.: Variational and Hemivariational Inequalities: Theory, Methods and Applications, Volume I: Unilateral Analysis and Unilateral Mechanics. Kluwer Academic, Dordrecht, Boston, London (2003) · Zbl 1259.49002
[12] Hjiaj, M.; Bodovillé, G.; Saxcé, G., Matériaux viscoplastiques et loi de normalité implicites, C, R. Acad. Sci. Sér. IIB-Mech., 328, 519-524, (2000) · Zbl 0996.74015
[13] Han W., Sofonea M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. Stud. Adv. Math. American Mathematical Society/International Press, Boston (2002) · Zbl 1013.74001
[14] Laborde, P.; Renard, Y., Fixed point strategies for elastostatic frictional contact problems, Math. Methods Appl. Sci., 31, 415-441, (2008) · Zbl 1132.74032
[15] Matei, A., A variational approach via bipotentials for unilateral contact problems, J. Math. Anal. Appl., 397, 371-380, (2013) · Zbl 1314.74055
[16] Matei, A., A variational approach via bipotentials for a class of frictional contact problems, Acta. Appl. Math., 134, 45-59, (2014) · Zbl 1308.49009
[17] Matei, A.; Niculescu, C., Weak solutions via bipotentials in mechanics of deformable solids, J. Math. Anal. Appl., 379, 15-25, (2011) · Zbl 1418.74010
[18] Migórski, S.; Ochal, A.; Sofonea, M., Weak solvability of antiplane frictional contact problems for elastic cylinders, Nonlinear Anal. Real World Appl., 11, 172-183, (2010) · Zbl 1241.74029
[19] Naniewicz, Z., On some nonmonotone subdifferential boundary conditions in elastostatics, Ingenieur-Archiv, 60, 31-40, (1989) · Zbl 0698.73009
[20] Naniewicz Z., Panagiotopoulos P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York (1995) · Zbl 0968.49008
[21] Panagiotopoulos P.D.: Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkhauser, Basel (1985) · Zbl 0579.73014
[22] Panagiotopoulos P.D.: Hemivariational Inequalities. Applications in Mechanics and Engineering. Springer, Berlin, Heidelberg, New York (1993) · Zbl 0826.73002
[23] Saxcé, G.; Feng, Z.Q., New inequality and functional for contact with friction: the implicit standard material approach, Mech. Struct. Mach., 19, 301-325, (1991)
[24] Saxcé, G.; Feng, Z.Q., The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithm, Math. Comput. Model., 28, 225-245, (1998) · Zbl 1126.74341
[25] Saxcé, G., Une généralisation de linégalité de Fenchel et ses applications aux lois constitutives, C. R. Acad. Sci. Sér. IIB-Mech., 314, 125-129, (1992) · Zbl 0754.73016
[26] de Saxcé, G.: The bipotential method, a new variational and numerical treatment of the dissipative laws of materials. In: Proceedings of 10th International Conference on Mathematical and Computer Modelling and Scientific Computing, Boston (1995) · Zbl 0997.74010
[27] de Saxcé, G., Bousshine, L.: On the extension of limit analysis theorems to the non associated flow rules in soils and to the contact with Coulomb’s friction. In: Proceedings of XI Polish Conference on Computer Methods in Mechanics, Kielce, pp. 815-822 (1993) · Zbl 1207.49019
[28] Saxcé, G.; Buliga, M.; Vallée, C., Blurred constitutive laws and bipotential convex covers, Math. Mech. Solids, 16, 161-171, (2011) · Zbl 1269.74008
[29] Zeidler E.: Nonlinear Functional Analysis and its Applications, IV: Applications to Mathematical Physics. Springer, New York (1988) · Zbl 0648.47036
[30] Zouian, N.; Filho, I.P.; Borges, L.; Costa, L.M., Plastic collapse in non-associated hardening materials with application to Cam-Clay, Int. J. Solids Struct., 44, 4382-4398, (2007) · Zbl 1142.74027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.