Maia, Liliane; Pellacci, Benedetta; Schiera, Delia Symmetric positive solutions to nonlinear Choquard equations with potentials. (English) Zbl 07488398 Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 61, 34 p. (2022). MSC: 35J91 35J15 35A01 PDF BibTeX XML Cite \textit{L. Maia} et al., Calc. Var. Partial Differ. Equ. 61, No. 2, Paper No. 61, 34 p. (2022; Zbl 07488398) Full Text: DOI arXiv OpenURL
Tian, Jian; Wei, Yuan Hong Superlinear elliptic equation with mixed boundary value in annular domain. (English) Zbl 1479.35435 Acta Math. Sin., Engl. Ser. 37, No. 10, 1549-1559 (2021). MSC: 35J62 35J25 35A01 PDF BibTeX XML Cite \textit{J. Tian} and \textit{Y. H. Wei}, Acta Math. Sin., Engl. Ser. 37, No. 10, 1549--1559 (2021; Zbl 1479.35435) Full Text: DOI OpenURL
Maia, Liliane A.; Ruviaro, Ricardo; Moura, Elson L. Bound state for a strongly coupled nonlinear Schrödinger system with saturation. (English) Zbl 1442.35086 Milan J. Math. 88, No. 1, 35-63 (2020). MSC: 35J10 35J47 35Q55 PDF BibTeX XML Cite \textit{L. A. Maia} et al., Milan J. Math. 88, No. 1, 35--63 (2020; Zbl 1442.35086) Full Text: DOI OpenURL
Lin, Genghong; Zhou, Zhan; Yu, Jianshe Ground state solutions of discrete asymptotically linear Schrödinger equations with bounded and non-periodic potentials. (English) Zbl 1439.39010 J. Dyn. Differ. Equations 32, No. 2, 527-555 (2020). MSC: 39A36 39A22 39A12 35Q55 PDF BibTeX XML Cite \textit{G. Lin} et al., J. Dyn. Differ. Equations 32, No. 2, 527--555 (2020; Zbl 1439.39010) Full Text: DOI OpenURL
Dong, Xu; Wei, Yuanhong Existence of radial solutions for nonlinear elliptic equations with gradient terms in annular domains. (English) Zbl 1425.35052 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 187, 93-109 (2019). MSC: 35J62 35J25 35A01 PDF BibTeX XML Cite \textit{X. Dong} and \textit{Y. Wei}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 187, 93--109 (2019; Zbl 1425.35052) Full Text: DOI OpenURL
Khatib, Alireza; Maia, Liliane A. A positive bound state for an asymptotically linear or superlinear Schrödinger equation in exterior domains. (English) Zbl 1397.35279 Commun. Pure Appl. Anal. 17, No. 6, 2789-2812 (2018). MSC: 35Q55 35J61 35J20 35J50 35B09 PDF BibTeX XML Cite \textit{A. Khatib} and \textit{L. A. Maia}, Commun. Pure Appl. Anal. 17, No. 6, 2789--2812 (2018; Zbl 1397.35279) Full Text: DOI OpenURL
Maia, Liliane A.; Pellacci, Benedetta Positive solutions for asymptotically linear problems in exterior domains. (English) Zbl 1388.35020 Ann. Mat. Pura Appl. (4) 196, No. 4, 1399-1430 (2017). Reviewer: Marcelo Furtado (Brasília) MSC: 35J10 35J61 35Q55 PDF BibTeX XML Cite \textit{L. A. Maia} and \textit{B. Pellacci}, Ann. Mat. Pura Appl. (4) 196, No. 4, 1399--1430 (2017; Zbl 1388.35020) Full Text: DOI arXiv OpenURL
Maia, L. A.; Oliveira Junior, J. C.; Ruviaro, R. Nonautonomous and non periodic Schrödinger equation with indefinite linear part. (English) Zbl 1366.35028 J. Fixed Point Theory Appl. 19, No. 1, 17-36 (2017). MSC: 35J20 35J60 35Q55 PDF BibTeX XML Cite \textit{L. A. Maia} et al., J. Fixed Point Theory Appl. 19, No. 1, 17--36 (2017; Zbl 1366.35028) Full Text: DOI OpenURL
Pacella, Filomena; Plum, Michael; Rütters, Dagmar A computer-assisted existence proof for Emden’s equation on an unbounded \(L\)-shaped domain. (English) Zbl 1367.35080 Commun. Contemp. Math. 19, No. 2, Article ID 1750005, 21 p. (2017). Reviewer: Alessandro Selvitella (Hamilton) MSC: 35J61 PDF BibTeX XML Cite \textit{F. Pacella} et al., Commun. Contemp. Math. 19, No. 2, Article ID 1750005, 21 p. (2017; Zbl 1367.35080) Full Text: DOI arXiv OpenURL
Clapp, Mónica; Maia, Liliane A. A positive bound state for an asymptotically linear or superlinear Schrödinger equation. (English) Zbl 1333.35247 J. Differ. Equations 260, No. 4, 3173-3192 (2016). Reviewer: Santosh Bhattarai (Buffalo) MSC: 35Q55 35B09 35J20 PDF BibTeX XML Cite \textit{M. Clapp} and \textit{L. A. Maia}, J. Differ. Equations 260, No. 4, 3173--3192 (2016; Zbl 1333.35247) Full Text: DOI OpenURL
Bartsch, Thomas; Clapp, Mónica; Grossi, Massimo; Pacella, Filomena Asymptotically radial solutions in expanding annular domains. (English) Zbl 1276.35083 Math. Ann. 352, No. 2, 485-515 (2012). MSC: 35J61 35B09 35B40 PDF BibTeX XML Cite \textit{T. Bartsch} et al., Math. Ann. 352, No. 2, 485--515 (2012; Zbl 1276.35083) Full Text: DOI OpenURL
Ackermann, Nils; Clapp, Mónica; Pacella, Filomena Self-focusing multibump standing waves in expanding waveguides. (English) Zbl 1229.35285 Milan J. Math. 79, No. 1, 221-232 (2011). MSC: 35Q60 78A50 78A60 PDF BibTeX XML Cite \textit{N. Ackermann} et al., Milan J. Math. 79, No. 1, 221--232 (2011; Zbl 1229.35285) Full Text: DOI OpenURL