×

Wetting transition of nonpolar neutral molecule system on a neutral and atomic length scale roughness substrate. (English) Zbl 1391.82020

Summary: One recently proposed new method for accurately determining wetting temperature is applied to the wetting transition occurring in a single component nonpolar neutral molecule system near a neutral planar substrate with roughness produced by cosinusoidal modulation(s). New observations are summarized into five points: (i) for a planar substrate superimposed with one cosinusoidal modulation, with increasing of the periodicity length or the surface attraction force field, or decreasing of the amplitude, wetting temperature \(T_W\) drops accordingly and the three parameters show multiplication effect; moreover, both the periodicity length and amplitude effect curves display pole phenomena and saturation phenomena, and the \(T_W\) saturation occurs at small (for case of large amplitude) or large (for case of small amplitude) periodicity length side, respectively. (ii) In the case of the planar substrate superimposed with two cosinusoidal modulations with equal periodicity length, the initial phase difference is critical issue that influences the \(T_W\), which decreases with the initial phase difference. (iii) In the case of the planar substrate superimposed with two cosinusoidal modulations with zero phase difference, change of the \(T_W\) with one periodicity length under the condition of another periodicity length unchanged is non-monotonous. (iv) When the parameters are chosen such that the \(T_W\) draws ever closer to the bulk critical temperature, wetting transition on the roughness substrate eventually does not occur. (v) The present microscopic calculation challenges traditional macroscopic theory by confirming that the atomic length scale roughness always renders the surface less hydrophilic and whereas the mesoscopical roughness renders the surface more hydrophilic. All of these observations summarized can be reasonably explained by the relative strength of the attraction actually enjoyed by the surface gas molecules to the attraction the gas molecules can get when in bulk.

MSC:

82B24 Interface problems; diffusion-limited aggregation arising in equilibrium statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Pit, M., Bonestroo, S., Wijnperle, D., Duits, M.H.G., Mugele, F.: Electrode-assisted trapping and release of droplets on hydrophilic patches in a hydrophobic microchannel. Microfluid Nanofluid 20, 123 (2016) · doi:10.1007/s10404-016-1789-z
[2] Okubo, T.: Wetting to drying patterns of a water droplet on a printed paper sheet. Colloid Polym. Sci. 294, 19 (2016) · doi:10.1007/s00396-015-3784-4
[3] Hirama, H., Wada, S., Shimamura, J., Komazaki, Y., Inoue, T., Torii, T.: Surface modification of a glass microchannel for the formation of multiple emulsion droplets. Microfluid Nanofluid 21, 91 (2017) · doi:10.1007/s10404-017-1929-0
[4] Lee, J.M., Zhang, M., Yeong, W.Y.: Characterization and evaluation of 3D printed microfluidic chip for cell processing. Microfluid Nanofluid 20, UNSP 5 (2016) · doi:10.1007/s10404-015-1688-8
[5] Shin, S., Seo, J., Han, H., Kang, S.B., Kim, H., Lee, T.: Bio-inspired extreme wetting surfaces for biomedical applications. Materials 9, 116 (2016) · doi:10.3390/ma9020116
[6] Elizalde, E., Urteaga, R., Berli, C.L.A.: Precise capillary flow for paper-based viscometry. Microfluid Nanofluid 20, 135 (2016) · doi:10.1007/s10404-016-1800-8
[7] Maria, M.S., Rakesh, P.E., Chandra, T.S., Sen, A.K.: Capillary flow of blood in a microchannel with differential wetting for blood plasma separation and on-chip glucose detection. Biomicrofluidics 10, 054108 (2016) · doi:10.1063/1.4962874
[8] de Gennes, P.G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827 (1985) · doi:10.1103/RevModPhys.57.827
[9] de Gennes, P.G., Brochard-Wyart, F., Quéré, D.: Capillarity and Wetting Phenomena. Springer, Berlin (2003) · Zbl 1139.76004
[10] Law, K.-Y., Zhao, H.: Surface Wetting: Characterization, Contact Angle, and Fundamentals. Springer, Berlin (2015)
[11] Pompe, T., Herminghaus, S.: Three-phase contact line energetics from nanoscale liquid surface topographies. Phys. Rev. Lett. 85, 1930 (2000) · doi:10.1103/PhysRevLett.85.1930
[12] Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988 (1936) · doi:10.1021/ie50320a024
[13] Wenzel, R.N.: Surface roughness and contact angle. J. Phys. Colloid Chem. 53, 1466 (1949) · doi:10.1021/j150474a015
[14] Cassie, A.B.D., Baxter, S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546 (1944) · doi:10.1039/tf9444000546
[15] Bonn, D., Eggers, J., Indekeu, J., Meunier, J., Rolley, E.: Wetting and spreading. Rev. Mod. Phys. 81, 739 (2009) · doi:10.1103/RevModPhys.81.739
[16] Malijevsky, A.: Does surface roughness amplify wetting? J. Chem. Phys. 141, 184703 (2014) · doi:10.1063/1.4901128
[17] Tretyakov, N., Papadopoulos, P., Vollmer, D., Butt, H.J., Dunweg, B., Daoulas, K.C.: The Cassie-Wenzel transition of fluids on nanostructured substrates: macroscopic force balance versus microscopic density-functional theory. J. Chem. Phys. 145, 134703 (2016) · doi:10.1063/1.4963792
[18] Khalkhali, M., Kazemi, N., Zhang, H., Liu, Q.X.: Wetting at the nanoscale: a molecular dynamics study. J. Chem. Phys. 146, 114704 (2017) · doi:10.1063/1.4978497
[19] Mussotter, M., Bier, M.: Wedge wetting by electrolyte solutions. Phys. Rev. E 96, 032605 (2017) · doi:10.1103/PhysRevE.96.032605
[20] Chang, C., Sheng, Y.J., Tsao, H.K.: Wetting hysteresis of nanodrops on nanorough surfaces. Phys. Rev. E 94, 042807 (2016) · doi:10.1103/PhysRevE.94.042807
[21] Bottiglione, F., Carbone, G., Persson, B.N.J.: Fluid contact angle on solid surfaces: role of multiscale surface roughness. J. Chem. Phys. 143, 134705 (2015) · doi:10.1063/1.4932104
[22] Svoboda, M., Malijevsky, A., Lisal, M.: Wetting properties of molecularly rough surfaces. J. Chem. Phys. 143, 104701 (2015) · doi:10.1063/1.4930084
[23] Nguyen, D., Tai, N.-H., Lee, S.-B., Kuo, W.-S.: Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ. Sci. 5, 7908 (2012) · doi:10.1039/c2ee21848h
[24] Rafiee, J., Rafiee, M.A., Yu, Z.-Z., Koratkar, N.: Superhydrophobic to superhydrophilic wetting control in graphene films. Adv. Mater. 22, 2151 (2010) · doi:10.1002/adma.200903696
[25] Asmatulu, R., Ceylan, M., Nuraje, N.: Study of superhydrophobic electrospun nanocomposite fibers for energy systems. Langmuir 27, 504 (2011) · doi:10.1021/la103661c
[26] Choi, B.G., Park, H.S.: Superhydrophobic graphene/nafion nanohybrid films with hierarchical roughness. J. Phys. Chem. C 116, 3207 (2012) · doi:10.1021/jp207818b
[27] Ming, W., Wu, D., van Benthem, R., de With, G.: Superhydrophobic films from raspberry-like particles. Nano Lett. 5, 2298 (2005) · doi:10.1021/nl0517363
[28] Andrews, J.E., Wang, Y., Sinha, S., Chung, P.W., Das, S.: Roughness-induced chemical heterogeneity leads to large hydrophobicity in wetting-translucent nanostructures. J. Phys. Chem. C 121, 10010 (2017) · doi:10.1021/acs.jpcc.7b02222
[29] McConnell, M.D., Bassani, A.W., Yang, S., Composto, R.J.: Tunable wetting of nanoparticle-decorated polymer films. Langmuir 25, 11014 (2009) · doi:10.1021/la901331q
[30] Bico, J., Tordeux, C., Quéré, D.: Rough wetting. Europhys. Lett. 55, 214 (2001) · doi:10.1209/epl/i2001-00402-x
[31] Bico, J., Thiele, U., Quéré, D.: Wetting of textured surfaces. Colloids Surf. A 206, 41 (2002) · doi:10.1016/S0927-7757(02)00061-4
[32] McHale, G., Shirtcliffe, N.J., Aqil, S., Perry, C.C., Newton, M.I.: Topography driven spreading. Phys. Rev. Lett. 93, 036102 (2004) · doi:10.1103/PhysRevLett.93.036102
[33] Shirtcliffe, N.J., Mchale, G., Newton, M.I., Perry, C.C., Roach, P.: Porous materials show superhydrophobic to superhydrophilic switching. Chem. Commun. 25, 3135 (2005) · doi:10.1039/b502896e
[34] Zhang, J.L., Lu, X.Y., Huang, W.H., Han, Y.C.: Reversible superhydrophobicity to superhydrophilicity transition by extending and unloading an elastic polyamide. Macromol. Rapid Commun. 26, 477 (2005) · doi:10.1002/marc.200400512
[35] Jiang, Y.G., Wang, Z.Q., Yu, X., Shi, F., Xu, H.P., Zhang, X.: Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces. Langmuir 21, 1986 (2005) · doi:10.1021/la047491b
[36] Sun, T.L., Wang, G.J., Feng, L., Liu, B.Q., Ma, Y.M., Jiang, L., Zhu, D.B.: Reversible switching between superhydrophilicity and superhydrophobicity. Angew. Chem., Int. Ed. 43, 357 (2004) · doi:10.1002/anie.200352565
[37] Zhou, S.: A statistical mechanics investigation about general aspects of wetting transition occurring in nonpolar neutral molecule system with a smooth solid wall. Chem. Phys. 494, 31 (2017) · doi:10.1016/j.chemphys.2017.07.010
[38] Henderson: Fundamentals of Inhomogeneous Fluids. Dekker, New York (1992)
[39] Zhou, S.: A new method suitable for calculating accurately wetting temperature over a wide range of conditions: based on the adaptation of continuation algorithm to classical DFT. J. Phys. Chem. Solids 110, 274 (2017) · doi:10.1016/j.jpcs.2017.06.024
[40] Attard, P.: The explicit density functional and its connection with entropy maximization. J. Stat. Phys. 100, 445 (2000) · Zbl 0998.82019 · doi:10.1023/A:1018668502023
[41] Percus, J.K.: A random walk to fundamental measure theory-a mini-review at a personal level. J. Stat. Phys. 150, 601 (2013) · Zbl 1264.82069 · doi:10.1007/s10955-012-0572-0
[42] Alastuey, A., Fantoni, R.: Fourth moment sum rule for the charge correlations of a two-component classical plasma. J. Stat. Phys. 163, 887 (2016) · Zbl 1342.82131 · doi:10.1007/s10955-016-1512-1
[43] Zhou, S.: Effective electrostatic interactions between two overall neutral surfaces with quenched charge heterogeneity over atomic length scale. J. Stat. Phys. 169, 1019 (2017) · Zbl 1387.82006 · doi:10.1007/s10955-017-1896-6
[44] Zhou, S., Lamperski, S., Sokołowska, M.: Classical density functional theory and Monte Carlo simulation study of electric double layer in the vicinity of a cylindrical electrode. J. Stat. Mech. Theory E. Paper ID/ 073207 (2017) · Zbl 1457.82477
[45] Zhou, S.: Change of electrostatic potential of mean force between two curved surfaces due to different salt composition, ion valence and size under certain ionic strength. J. Phys. Chem. Solids 89, 53 (2016) · doi:10.1016/j.jpcs.2015.10.014
[46] Zhou, S.: Electrostatic potential of mean force between two curved surfaces in the presence of counterion connectivity. Phys. Rev. E 92, 052317 (2015) · doi:10.1103/PhysRevE.92.052317
[47] Zhou, S.: Three-body potential amongst similarly or differently charged cylinder colloids immersed in a simple electrolyte solution. J. Stat. Mech. Theory E. Paper ID/ P11030 (2015)
[48] Bharadwaj, A.S., Singh, Y.: Density-functional theory for fluid-solid and solid-solid phase transitions. Phys. Rev. E 95, 032120 (2017) · doi:10.1103/PhysRevE.95.032120
[49] Frydel, D., Ma, M.M.: Density functional formulation of the random-phase approximation for inhomogeneous fluids: application to the Gaussian core and Coulomb particles. Phys. Rev. E 93, 062112 (2016) · doi:10.1103/PhysRevE.93.062112
[50] Evans, R., Stewart, M.C., Wilding, N.B.: Drying and wetting transitions of a Lennard-Jones fluid: simulations and density functional theory. J. Chem. Phys. 147, 044701 (2017) · doi:10.1063/1.4993515
[51] Motevaselian, M.H., Aluru, N.R.: An EQT-based cDFT approach for thermodynamic properties of confined fluid mixtures. J. Chem. Phys. 146, 154102 (2017) · doi:10.1063/1.4979896
[52] Warshavsky, V., Marucho, M.: Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall. Phys. Rev. E 93, 042607 (2016) · doi:10.1103/PhysRevE.93.042607
[53] Cattes, S.M., Gubbins, K.E., Schoen, M.: Mean-field density functional theory of a nanoconfined classical, three-dimensional Heisenberg fluid. I. The role of molecular anchoring. J. Chem. Phys. 144, 194704 (2016) · doi:10.1063/1.4949330
[54] Weeks, J.D., Chandler, D., Anderson, H.C.: Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54, 5237 (1971) · doi:10.1063/1.1674820
[55] Zhou, S.: Augmented Kierlik-Rosinberg fundamental measure functional and extension of fundamental measure functional to inhomogeneous non-hard sphere fluids. Commun. Theor. Phys. 54, 1023 (2010) · Zbl 1406.76004 · doi:10.1088/0253-6102/54/6/14
[56] Zhou, S.: Enhanced KR-fundamental measure functional for inhomogeneous binary and ternary hard sphere mixtures. Commun. Theor. Phys. 55, 46 (2011) · Zbl 1400.82224 · doi:10.1088/0253-6102/55/1/10
[57] Kierlik, E., Rosinberg, M.L.: Free-energy density functional for the inhomogeneous hard-sphere fluid: application to interfacial adsorption. Phys. Rev. A 42, 3382 (1990) · doi:10.1103/PhysRevA.42.3382
[58] Barker, J.A., Henderson, D.: Perturbation theory and equation of state for fluids. II. A successful theory of liquids. J. Chem. Phys. 47, 4714 (1967) · doi:10.1063/1.1701689
[59] Zhou, S., Zhang, M.: Statistical mechanics study on wetting behaviors of Ne on Mg surface. J. Phys. Chem. Solids 103, 123-131 (2017) · doi:10.1016/j.jpcs.2016.12.010
[60] Hess, B., Sabatini, M.J., Chan, M.H.W.: Nonwetting of cesium by neon near its critical point. Phys. Rev. Lett. 78, 1739 (1997) · doi:10.1103/PhysRevLett.78.1739
[61] Chizmeshya, A., Cole, M.W., Zaremba, E.: Weak binding potentials and wetting transitions. J. Low Temp. Phys. 110, 677 (1998) · doi:10.1023/A:1022556227148
[62] Khlyupin, A., Aslyamov, T.: Random process theory approach to geometric heterogeneous surfaces: effective fluid-solid interaction. J. Stat. Phys. 167, 1519 (2017) · Zbl 1376.82024 · doi:10.1007/s10955-017-1786-y
[63] Arndt, P.F., Heinzel, T., Rittenberg, V.: Spontaneous breaking of translational invariance and spatial condensation in stationary states on a ring. I. The neutral system. J. Stat. Phys. 97, 1 (1999) · Zbl 0970.82037 · doi:10.1023/A:1004670916674
[64] Bharadwaj, A.S., Singh, Y.: Density-functional theory for fluid-solid and solid-solid phase transitions. Phys. Rev. E 95, 032120 (2017) · doi:10.1103/PhysRevE.95.032120
[65] Bharadwaj, A.S., Singh, Y.: Fluid-solid transition in simple systems using density functional theory. J. Chem. Phys. 143, 124503 (2015) · doi:10.1063/1.4931376
[66] Russo, J., Tanaka, H.: Crystal nucleation as the ordering of multiple order parameters. J. Chem. Phys. 145, 211801 (2016) · doi:10.1063/1.4962166
[67] Angelini, M.C., Biroli, G.: Real space Migdal-Kadanoff renormalisation of glassy systems: recent results and a critical assessment. J. Stat. Phys. 167, 476 (2017) · Zbl 1375.82040 · doi:10.1007/s10955-017-1748-4
[68] Aumann, S.: Spontaneous breaking of rotational symmetry with arbitrary defects and a rigidity estimate. J. Stat. Phys. 160, 168 (2015) · Zbl 1323.82046 · doi:10.1007/s10955-015-1234-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.