Deng, Qingquan; Yao, Xiaohua Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations with time-dependent potential. (English) Zbl 1443.81029 J. Math. Phys. 61, No. 4, 041504, 35 p. (2020). MSC: 81Q05 81Q10 35Q55 35Q41 35C08 46E39 93B18 PDF BibTeX XML Cite \textit{Q. Deng} and \textit{X. Yao}, J. Math. Phys. 61, No. 4, 041504, 35 p. (2020; Zbl 1443.81029) Full Text: DOI OpenURL
Martínez, María E. Decay of small odd solutions for long range Schrödinger and Hartree equations in one dimension. (English) Zbl 1434.35185 Nonlinearity 33, No. 3, 1156-1182 (2020). MSC: 35Q55 35Q40 35B40 35P25 35C08 35B35 PDF BibTeX XML Cite \textit{M. E. Martínez}, Nonlinearity 33, No. 3, 1156--1182 (2020; Zbl 1434.35185) Full Text: DOI arXiv OpenURL
Boussaïd, Nabile; Comech, Andrew Spectral stability of small amplitude solitary waves of the Dirac equation with the Soler-type nonlinearity. (English) Zbl 1426.35026 J. Funct. Anal. 277, No. 12, Article ID 108289, 68 p. (2019). MSC: 35B35 35Q41 35C08 35P15 PDF BibTeX XML Cite \textit{N. Boussaïd} and \textit{A. Comech}, J. Funct. Anal. 277, No. 12, Article ID 108289, 68 p. (2019; Zbl 1426.35026) Full Text: DOI arXiv OpenURL
Yang, Kai; Roudenko, Svetlana; Zhao, Yanxiang Blow-up dynamics and spectral property in the \(L^{2}\)-critical nonlinear Schrödinger equation in high dimensions. (English) Zbl 1397.35291 Nonlinearity 31, No. 9, 4354-4392 (2018). MSC: 35Q55 35Q40 35P30 35B44 PDF BibTeX XML Cite \textit{K. Yang} et al., Nonlinearity 31, No. 9, 4354--4392 (2018; Zbl 1397.35291) Full Text: DOI arXiv OpenURL
Babich, V. M.; Budylin, A. M.; Dmitrieva, L. A.; Fedotov, A. A.; Komech, A. I.; Levin, S. B.; Perel, M. V.; Rybakina, E. A.; Sukhanov, V. V. On the mathematical work of Vladimir Savel’evich Buslaev. (English. Russian original) Zbl 1304.35001 St. Petersbg. Math. J. 25, No. 2, 151-174 (2014); translation from Algebra Anal. 25, No. 2, 3-36 (2013). MSC: 35-00 01A70 PDF BibTeX XML Cite \textit{V. M. Babich} et al., St. Petersbg. Math. J. 25, No. 2, 151--174 (2014; Zbl 1304.35001); translation from Algebra Anal. 25, No. 2, 3--36 (2013) Full Text: DOI OpenURL
Egli, Daniel; Fröhlich, Jürg; Gang, Zhou; Shao, Arick; Sigal, Israel Michael Hamiltonian dynamics of a particle interacting with a wave field. (English) Zbl 1281.35084 Commun. Partial Differ. Equations 38, No. 12, 2155-2198 (2013). MSC: 35Q70 35B35 70H14 35B40 35C07 PDF BibTeX XML Cite \textit{D. Egli} et al., Commun. Partial Differ. Equations 38, No. 12, 2155--2198 (2013; Zbl 1281.35084) Full Text: DOI arXiv OpenURL
Imaykin, Valery; Komech, Alexander; Spohn, Herbert Scattering asymptotics for a charged particle coupled to the Maxwell field. (English) Zbl 1316.78002 J. Math. Phys. 52, No. 4, 042701, 33 p. (2011). MSC: 78A35 78A60 35C08 78A40 28C20 PDF BibTeX XML Cite \textit{V. Imaykin} et al., J. Math. Phys. 52, No. 4, 042701, 33 p. (2011; Zbl 1316.78002) Full Text: DOI arXiv Link OpenURL
Gentile, Guido; Procesi, Michela Periodic solutions for a class of nonlinear partial differential equations in higher dimension. (English) Zbl 1172.35065 Commun. Math. Phys. 289, No. 3, 863-906 (2009). MSC: 35Q53 35Q55 35B10 PDF BibTeX XML Cite \textit{G. Gentile} and \textit{M. Procesi}, Commun. Math. Phys. 289, No. 3, 863--906 (2009; Zbl 1172.35065) Full Text: DOI arXiv OpenURL
Zhou, Gang Perturbation expansion and \(N\)th order Fermi golden rule of the nonlinear Schrödinger equations. (English) Zbl 1144.81430 J. Math. Phys. 48, No. 5, 053509, 23 p. (2007). MSC: 47N50 35Q55 81Q15 PDF BibTeX XML Cite \textit{G. Zhou}, J. Math. Phys. 48, No. 5, 053509, 23 p. (2007; Zbl 1144.81430) Full Text: DOI OpenURL
Boussaid, Nabile Stable directions for small nonlinear Dirac standing waves. (English) Zbl 1127.35060 Commun. Math. Phys. 268, No. 3, 757-817 (2006). MSC: 35Q55 37K45 81Q05 35P25 PDF BibTeX XML Cite \textit{N. Boussaid}, Commun. Math. Phys. 268, No. 3, 757--817 (2006; Zbl 1127.35060) Full Text: DOI arXiv OpenURL
Gang, Zhou; Sigal, I. M. Asymptotic stability of nonlinear Schrödinger equations with potential. (English) Zbl 1086.82013 Rev. Math. Phys. 17, No. 10, 1143-1207 (2005). Reviewer: David Jou (Bellaterra) MSC: 82C20 35Q55 37K45 PDF BibTeX XML Cite \textit{Z. Gang} and \textit{I. M. Sigal}, Rev. Math. Phys. 17, No. 10, 1143--1207 (2005; Zbl 1086.82013) Full Text: DOI arXiv OpenURL