×

zbMATH — the first resource for mathematics

An algorithm to identify automorphisms which arise from self-induced interval exchange transformations. (English) Zbl 1291.37013
Author’s abstract: we give an algorithm to determine if the dynamical system generated by a positive automorphism of the free group can also be generated by a self-induced interval exchange transformation. The algorithm effectively yields the interval exchange transformation in case of success.

MSC:
37B10 Symbolic dynamics
20E08 Groups acting on trees
37E05 Dynamical systems involving maps of the interval
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Arnoux, P.; Berthé, V.; Hilion, A.; Siegel, A., Fractal representation of the attractive lamination of an automorphism of the free group, Ann. Inst. Fourier, 56, 2161-2212, (2006) · Zbl 1146.20020
[2] Bestvina, M.; Feighn, M.; Handel, M., Laminations, trees, and irreducible automorphisms of free group, Geom. Funct. Anal., 7, 215-244, (1997) · Zbl 0884.57002
[3] Boshernitzan, M.; Kornfeld, I., Interval translation mappings, Ergodic Theory Dyn. Syst., 15, 821-832, (1995) · Zbl 0836.58026
[4] Boissy, C., Lanneau, E.: Pseudo-Anosov homeomorphisms on translation surfaces in hyperelliptic components have large entropy (2010) arXiv:1005.4148v2 · Zbl 1260.37018
[5] Coulbois, T.; Hilion, A., Botany of irreducible automorphisms of free groups, Pac. J. Math., 256, 291-307, (2012) · Zbl 1259.20031
[6] Coulbois, T.; Hilion, A.; Lustig, M., \({\mathbb{R}}\)-trees and laminations for free groups I: algebraic laminations, J. Lond. Math. Soc., 78, 723-736, (2008) · Zbl 1197.20019
[7] Coulbois, T.; Hilion, A.; Lustig, M., \({\mathbb{R}}\)-trees, dual laminations, and compact systems of partial isometries, Math. Proc. Cambridge Phil. Soc., 147, 345-368, (2009) · Zbl 1239.20030
[8] Coulbois, T., Fractal trees for irreducible automorphisms of free groups, J. Mod. Dyn., 4, 359-391, (2010) · Zbl 1271.20030
[9] Canterini, V.; Siegel, A., Automate des préfixes-suffixes associé à une substitution primitive, Journal de Théorie des Nombres de Bordeaux, 13, 353-369, (2001) · Zbl 1071.37011
[10] Fathi, A., Laudenbach, F., Poénaru, V.: Travaux de Thurston sur les surfaces. Astérisque, vol. 66-67. Société Mathématiques de France (1979) · Zbl 1197.20019
[11] Gaboriau, D.; Jaeger, A.; Levitt, G.; Lustig, M., An index for counting fixed points of automorphisms of free groups, Duke Math. J., 93, 425-452, (1988) · Zbl 0946.20010
[12] Jullian, Y.: Explicit computation of the index of a positive outer automorphism of the free group (2010) arXiv:1012.3267 · Zbl 0486.28014
[13] Jullian, Y., Construction du cœur compact d’un arbre réel par substitution d’arbre, Ann. Inst. Fourier, 61, 851-904, (2011) · Zbl 1277.37022
[14] Keane, M., Interval exchange transformations, Math. Z., 141, 25-31, (1975) · Zbl 0278.28010
[15] Keane, M., Non-ergodic interval exchange transformations, Israel J. Math., 26, 188-196, (1977) · Zbl 0351.28012
[16] Queffélec, M.: Substitution Dynamical Systems-Spectral Analysis. In: Lecture Notes in Mathematics, vol. 1294. Springer, Berlin (1987) · Zbl 1277.37022
[17] Rauzy, G., Echanges d’intervalles et transformations induites, Acta Arith., 34, 315-328, (1979) · Zbl 0414.28018
[18] Veech, W.A., Gauss measures for transformations on the space of interval exchange maps, Ann. Math. (2), 115, 201-242, (1982) · Zbl 0486.28014
[19] Yoccoz, J.-C.: Continued fraction algorithms for interval exchange maps: an introduction. In: Frontiers in Number Theory, Physics and Geometry, vol. 1, pp. 401-435. Springer (2006) · Zbl 1127.28011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.