×

Extremal surfaces as bulk probes in AdS/CFT. (English) Zbl 1397.83155

Summary: Motivated by the need for further insight into the emergence of AdS bulk spacetime from CFT degrees of freedom, we explore the behaviour of probes represented by specific geometric quantities in the bulk. We focus on geodesics and \(n\)-dimensional extremal surfaces in a general static asymptotically AdS spacetime with spherical and planar symmetry, respectively. While our arguments do not rely on the details of the metric, we illustrate some of our findings explicitly in spacetimes of particular interest (specifically AdS, Schwarzschild-AdS and extreme Reissner-Nordstrom-AdS). In case of geodesics, we find that for a fixed spatial distance between the geodesic endpoints, spacelike geodesics at constant time can reach deepest into the bulk. We also present a simple argument for why, in the presence of a black hole, geodesics cannot probe past the horizon whilst anchored on the AdS boundary at both ends. The reach of an extremal \(n\)-dimensional surface anchored on a given region depends on its dimensionality, the shape and size of the bounding region, as well as the bulk metric. We argue that for a fixed extent or volume of the boundary region, spherical regions give rise to the deepest reach of the corresponding extremal surface. Moreover, for physically sensible spacetimes, at fixed extent of the boundary region, higher-dimensional surfaces reach deeper into the bulk. Finally, we show that in a static black hole spacetime, no extremal surface (of any dimensionality, anchored on any region in the boundary) can ever penetrate the horizon.

MSC:

83E30 String and superstring theories in gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Maldacena, JM, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231, (1998) · Zbl 0914.53047
[2] T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
[3] J. Polchinski, S matrices from AdS space-time, hep-th/9901076 [INSPIRE].
[4] L. Susskind, Holography in the flat space limit, hep-th/9901079 [INSPIRE]. · Zbl 0973.83545
[5] Giddings, SB, Flat space scattering and bulk locality in the AdS/CFT correspondence, Phys. Rev., D 61, 106008, (2000)
[6] Horowitz, GT; Hubeny, VE, CFT description of small objects in AdS, JHEP, 10, 027, (2000) · Zbl 0959.83052 · doi:10.1088/1126-6708/2000/10/027
[7] Hamilton, A.; Kabat, DN; Lifschytz, G.; Lowe, DA, Local bulk operators in AdS/CFT: A boundary view of horizons and locality, Phys. Rev., D 73, 086003, (2006)
[8] Gary, M.; Giddings, SB, The flat space S-matrix from the AdS/CFT correspondence?, Phys. Rev., D 80, 046008, (2009)
[9] Heemskerk, I.; Penedones, J.; Polchinski, J.; Sully, J., Holography from conformal field theory, JHEP, 10, 079, (2009) · doi:10.1088/1126-6708/2009/10/079
[10] Kabat, D.; Lifschytz, G.; Lowe, DA, Constructing local bulk observables in interacting AdS/CFT, Phys. Rev., D 83, 106009, (2011)
[11] A.L. Fitzpatrick and J. Kaplan, Scattering States in AdS/CFT, arXiv:1104.2597 [INSPIRE].
[12] I. Heemskerk, D. Marolf and J. Polchinski, Bulk and Transhorizon Measurements in AdS/CFT, arXiv:1201.3664 [INSPIRE].
[13] Hubeny, VE; Rangamani, M., A holographic view on physics out of equilibrium, Adv. High Energy Phys., 2010, 297916, (2010) · Zbl 1216.83028
[14] Fidkowski, L.; Hubeny, V.; Kleban, M.; Shenker, S., The black hole singularity in AdS/CFT, JHEP, 02, 014, (2004) · doi:10.1088/1126-6708/2004/02/014
[15] Festuccia, G.; Liu, H., Excursions beyond the horizon: black hole singularities in Yang-Mills theories. I, JHEP, 04, 044, (2006) · doi:10.1088/1126-6708/2006/04/044
[16] Balasubramanian, V.; Ross, SF, Holographic particle detection, Phys. Rev., D 61, 044007, (2000)
[17] Louko, J.; Marolf, D.; Ross, SF, On geodesic propagators and black hole holography, Phys. Rev., D 62, 044041, (2000)
[18] Kraus, P.; Ooguri, H.; Shenker, S., Inside the horizon with AdS/CFT, Phys. Rev., D 67, 124022, (2003)
[19] Balasubramanian, V.; etal., Typicality versus thermality: an analytic distinction, Gen. Rel. Grav., 40, 1863, (2008) · Zbl 1152.83371 · doi:10.1007/s10714-008-0606-8
[20] Mathur, SD, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys., 53, 793, (2005) · Zbl 1116.83300 · doi:10.1002/prop.200410203
[21] Skenderis, K.; Taylor, M., The fuzzball proposal for black holes, Phys. Rept., 467, 117, (2008) · doi:10.1016/j.physrep.2008.08.001
[22] Freivogel, B.; Hubeny, VE; Maloney, A.; Myers, RC; Rangamani, M.; Shenker, S., Inflation in AdS/CFT, JHEP, 03, 007, (2006) · Zbl 1226.83060 · doi:10.1088/1126-6708/2006/03/007
[23] Hubeny, VE; Liu, H.; Rangamani, M., Bulk-cone singularities & signatures of horizon formation in AdS/CFT, JHEP, 01, 009, (2007) · doi:10.1088/1126-6708/2007/01/009
[24] S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Grav.17 (2000) 4999 [gr-qc/0007021] [INSPIRE]. · Zbl 0972.83015
[25] Erdmenger, J.; Hoyos, C.; Lin, S., Time singularities of correlators from Dirichlet conditions in AdS/CFT, JHEP, 03, 085, (2012) · Zbl 1309.81270 · doi:10.1007/JHEP03(2012)085
[26] Amado, I.; Hoyos-Badajoz, C., AdS black holes as reflecting cavities, JHEP, 09, 118, (2008) · Zbl 1245.83020 · doi:10.1088/1126-6708/2008/09/118
[27] Erdmenger, J.; Lin, S.; Ngo, TH, A moving mirror in AdS space as a toy model for holographic thermalization, JHEP, 04, 035, (2011) · doi:10.1007/JHEP04(2011)035
[28] Hammersley, J., Extracting the bulk metric from boundary information in asymptotically AdS spacetimes, JHEP, 12, 047, (2006) · Zbl 1226.83051 · doi:10.1088/1126-6708/2006/12/047
[29] Bilson, S., Extracting spacetimes using the AdS/CFT conjecture, JHEP, 08, 073, (2008) · Zbl 1294.83069 · doi:10.1088/1126-6708/2008/08/073
[30] Maldacena, JM, Wilson loops in large-N field theories, Phys. Rev. Lett., 80, 4859, (1998) · Zbl 0947.81128 · doi:10.1103/PhysRevLett.80.4859
[31] Rey, S-J; Yee, J-T, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J., C 22, 379, (2001) · Zbl 1072.81555 · doi:10.1007/s100520100799
[32] Nishioka, T.; Ryu, S.; Takayanagi, T., Holographic entanglement entropy: an overview, J. Phys., A 42, 504008, (2009) · Zbl 1179.81138
[33] Casini, H.; Huerta, M.; Myers, RC, Towards a derivation of holographic entanglement entropy, JHEP, 05, 036, (2011) · Zbl 1296.81073 · doi:10.1007/JHEP05(2011)036
[34] Hubeny, VE; Rangamani, M.; Takayanagi, T., A covariant holographic entanglement entropy proposal, JHEP, 07, 062, (2007) · doi:10.1088/1126-6708/2007/07/062
[35] Bousso, R., A covariant entropy conjecture, JHEP, 07, 004, (1999) · Zbl 0951.83011 · doi:10.1088/1126-6708/1999/07/004
[36] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602, (2006) · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[37] Ryu, S.; Takayanagi, T., Aspects of holographic entanglement entropy, JHEP, 08, 045, (2006) · doi:10.1088/1126-6708/2006/08/045
[38] Abajo-Arrastia, J.; Aparicio, J.; Lopez, E., Holographic evolution of entanglement entropy, JHEP, 11, 149, (2010) · Zbl 1294.81128 · doi:10.1007/JHEP11(2010)149
[39] Aparicio, J.; Lopez, E., Evolution of two-point functions from holography, JHEP, 12, 082, (2011) · Zbl 1306.81145 · doi:10.1007/JHEP12(2011)082
[40] Albash, T.; Johnson, CV, Evolution of holographic entanglement entropy after thermal and electromagnetic quenches, New J. Phys., 13, 045017, (2011) · doi:10.1088/1367-2630/13/4/045017
[41] Balasubramanian, V.; etal., Thermalization of strongly coupled field theories, Phys. Rev. Lett., 106, 191601, (2011) · doi:10.1103/PhysRevLett.106.191601
[42] Balasubramanian, V.; etal., Holographic thermalization, Phys. Rev., D 84, 026010, (2011)
[43] Albash, T.; Johnson, CV, Holographic entanglement entropy and renormalization group flow, JHEP, 02, 095, (2012) · Zbl 1309.81140 · doi:10.1007/JHEP02(2012)095
[44] Albash, T.; Johnson, CV, Holographic studies of entanglement entropy in superconductors, JHEP, 05, 079, (2012) · doi:10.1007/JHEP05(2012)079
[45] Haro, S.; Solodukhin, SN; Skenderis, K., Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys., 217, 595, (2001) · Zbl 0984.83043 · doi:10.1007/s002200100381
[46] Bhattacharyya, S.; Hubeny, VE; Minwalla, S.; Rangamani, M., Nonlinear fluid dynamics from gravity, JHEP, 02, 045, (2008) · doi:10.1088/1126-6708/2008/02/045
[47] Hubeny, VE, Precursors see inside black holes, Int. J. Mod. Phys., D 12, 1693, (2003)
[48] Myers, RC; Singh, A., Comments on holographic entanglement entropy and RG flows, JHEP, 04, 122, (2012) · Zbl 1348.81337 · doi:10.1007/JHEP04(2012)122
[49] H. Liu and M. Mezei, A Refinement of entanglement entropy and the number of degrees of freedom, arXiv:1202.2070 [INSPIRE]. · Zbl 1342.81346
[50] Balasubramanian, V.; Kraus, P., A stress tensor for anti-de Sitter gravity, Commun. Math. Phys., 208, 413, (1999) · Zbl 0946.83013 · doi:10.1007/s002200050764
[51] Keranen, V.; Keski-Vakkuri, E.; Thorlacius, L., Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev., D 85, 026005, (2012)
[52] Booth, I., Black hole boundaries, Can. J. Phys., 83, 1073, (2005) · doi:10.1139/p05-063
[53] Figueras, P.; Hubeny, VE; Rangamani, M.; Ross, SF, Dynamical black holes and expanding plasmas, JHEP, 04, 137, (2009) · doi:10.1088/1126-6708/2009/04/137
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.