×

Robust waveform design for MIMO radar with imperfect prior knowledge. (English) Zbl 1346.94054

Summary: Waveform optimization for multi-input multi-output radar usually depends on the initial parameter estimates (i.e., some prior information on the target of interest and scenario). However, it is sensitive to estimate errors and uncertainty in the parameters. Robust waveform design attempts to systematically alleviate the sensitivity by explicitly incorporating a parameter uncertainty model into the optimization problem. In this paper, we consider the robust waveform optimization to improve the worst-case performance of parameter estimation over a convex uncertainty model, which is based on the Cramer-Rao bound. An iterative algorithm is proposed to optimize the waveform covariance matrix such that the worst-case performance can be improved. Each iteration step in the proposed algorithm is solved by resorting to convex relaxation that belongs to the semidefinite programming class. Numerical results show that the worst-case performance can be improved considerably by the proposed method compared to that of uncorrelated waveforms and the non-robust method.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
94A13 Detection theory in information and communication theory

Software:

YALMIP
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. Ahmed, M.S. Alouini, MIMO radar transmit beampattern design without synthesising the covariance matrix. IEEE Trans. Signal Process. 62, 2278-2289 (2014) · Zbl 1394.94031 · doi:10.1109/TSP.2014.2310435
[2] A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization (SIAM, Philadelphia, 2001) · Zbl 0986.90032 · doi:10.1137/1.9780898718829
[3] C.Y. Chen, P.P. Vaidyanathan, MIMO radar ambiguity properties and optimization using frequency-hopping waveforms. IEEE Trans. Signal Process. 56, 5926-5936 (2008) · Zbl 1390.94728 · doi:10.1109/TSP.2008.929658
[4] C.Y. Chen, P.P. Vaidyanathan, MIMO radar waveform optimization with prior information of the extended target and clutter. IEEE Trans. Signal Process. 57, 3533-3544 (2009) · Zbl 1205.90224 · doi:10.1109/TSP.2009.2021632
[5] Y.C. Eldar, A. Ben-Tal, A. Nemirovski, Robust mean-squared error estimation in the presence of model uncertainties. IEEE Trans. Signal Process. 53, 168-181 (2005) · Zbl 1370.93255 · doi:10.1109/TSP.2004.838933
[6] E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, R. Valenzuela, MIMO Radar: An Idea Whose Time has Come. in Proceedings of the IEEE Radar Conference (Newark, NJ, USA, 2004), pp. 71-78 · Zbl 1394.94031
[7] E. Fishler, A. Haimovich, R. Blum, L. Cimini, D. Chizhik, R. Valenzuela, Spatial diversity in radars-models and detection performance. IEEE Trans. Signal Process. 54, 823-838 (2006) · Zbl 1373.94779 · doi:10.1109/TSP.2005.862813
[8] B. Friedlander, Waveform design for MIMO radars. IEEE Trans. Aerosp. Electron. Syst. 43, 1227-1238 (2007) · doi:10.1109/TAES.2007.4383615
[9] D.R. Fuhrmann, G.S. Antonio, Transmit beamforming for MIMO radar systems using signal cross-correlation. IEEE Trans. Aerosp. Electron. Syst. 44, 171-186 (2008) · doi:10.1109/TAES.2008.4516997
[10] J.D. Gorman, A.O. Hero, Lower bounds for parametric estimation with constraints. IEEE Trans. Inf. Theory 26, 1285-1301 (1990) · Zbl 0725.62032 · doi:10.1109/18.59929
[11] E. Grossi, M. Lops, L. Venturino, Robust waveform design for MIMO radars. IEEE Trans. Signal Process. 59, 3262-3271 (2011) · Zbl 1392.94229 · doi:10.1109/TSP.2011.2131138
[12] R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985) · Zbl 0576.15001 · doi:10.1017/CBO9780511810817
[13] S. Kim, A. Magnani, A. Mutapcic, S.P. Boyd, Z. Luo, Robust beamforming via worst-case SINR maximization. IEEE Trans. Signal Process. 56, 1539-1547 (2008) · Zbl 1390.94245 · doi:10.1109/TSP.2007.911498
[14] G. Krieger, MIMO-SAR opportunities and pitfalls. IEEE Trans. Geosci. Remote Sens. 52, 2628-2645 (2014) · doi:10.1109/TGRS.2013.2263934
[15] A. Leshem, O. Naparstek, A. Nehorai, Information theoretic adaptive radar waveform design for multiple extended targets. IEEE J. Sel. Top. Signal Process. 1, 42-55 (2007) · doi:10.1109/JSTSP.2007.897047
[16] J. Li, P. Stoica, MIMO radar with colocated antennas. IEEE Signal Process. Mag. 24, 106-114 (2007) · doi:10.1109/MSP.2007.904812
[17] J. Li, P. Stoica, L. Xu, W. Roberts, On parameter identifiability of MIMO radar. IEEE Trans. Signal Process. Lett. 14, 968-971 (2007) · doi:10.1109/LSP.2007.905051
[18] J. Li, L. Xu, P. Stoica, K.W. Forsythe, D.W. Bliss, Range compression and waveform optimization for MIMO radar: a Cramer-Rao bound based study. IEEE Trans. Signal Process. 56, 218-232 (2008) · Zbl 1390.94268 · doi:10.1109/TSP.2007.901653
[19] J. Li, L. Xu, P. Stoica, Zheng Xiayu, Signal synthesis and receiver design for MIMO radar imaging. IEEE Trans. Signal Process. 56, 3959-3968 (2008) · Zbl 1390.94767 · doi:10.1109/TSP.2008.923197
[20] B. Liu, Z. He, J. Zeng, B. Y. Liu, Polyphase Orthogonal Code Design for MIMO Radar Systems. in International Conference on Radar (2006), pp. 1-4
[21] B. Liu, Z. He, Q. He, Optimization of Orthogonal Discrete Frequency-Coding Waveform Based on Modified Genetic Algorithm for MIMO Radar. in International Conference on Communication, Circuits, and Systems (2007), pp. 966-970
[22] J. Lofberg, YALMIP: A Toolbox for Modeling and Optimization in MATLAB. in Proceedings of the CACSD Conference (Taipei, Taiwan, 2004), pp. 284-289 · Zbl 1390.94423
[23] T. Naghibi, M. Namvar, F. Behnia, Optimal and robust waveform design for MIMO radars in the presence of clutter. Signal Process. 90, 1103-1117 (2010) · Zbl 1197.94097 · doi:10.1016/j.sigpro.2009.07.033
[24] S. Peter, J. Li, Y. Xie, On probing signal design for MIMO radar. IEEE Trans. Signal Process. 55, 4151-4161 (2007) · Zbl 1390.94422 · doi:10.1109/TSP.2007.894398
[25] J.G. Proakis, Digital Communications, 4th edn. (McGraw Hill, New York, 2001) · Zbl 0292.94002
[26] D. Rabideau, MIMO radar waveforms and cancellation ratio. IEEE Trans. Aerosp. Electron. Syst. 48, 1167-1178 (2012) · doi:10.1109/TAES.2012.6178055
[27] B.M. Sadler, R.J. Kozick, T. Moore, Bounds on bearing and symbol estimation with side information. IEEE Trans. Signal Process. 49, 822-834 (2001) · doi:10.1109/78.912927
[28] P.F. Sammartino, C.J. Baker, H.D. Griffiths, Frequency diverse MIMO techniques for radar. IEEE Trans. Aerosp. Electron. Syst. 49, 201-222 (2013) · doi:10.1109/TAES.2013.6404099
[29] M. Soltanalian, H. Hu, P. Stoica, Single-stage transmit beamforming design for MIMO radar. Signal Process. 102, 132-138 (2014) · doi:10.1016/j.sigpro.2014.03.013
[30] P. Stoica, C. Ng Boon, On the Cramer-Rao bound under parametric constraints. IEEE Signal Process. Lett. 5, 177-179 (1998) · doi:10.1109/97.700921
[31] P. Stoica, R.L. Moses, Spectral Analysis of Signals (Prentice-Hall, Upper SaddleRiver, 2005)
[32] P. Stoica, J. Li, X. Zhu, Waveform synthesis for diversity-based transmit beampattern design. IEEE Trans. Signal Process. 56, 2593-2598 (2008) · Zbl 1151.94404 · doi:10.1109/TSP.2007.916139
[33] Bo Tang, Jun Tang, Yingning Pen, Waveform optimization for MIMO radar in colored noise: further results for estimation-oriented criteria. IEEE Trans. Signal Process. 60, 1517-1522 (2012) · Zbl 1393.94453 · doi:10.1109/TSP.2011.2177262
[34] D. Tarchi, F. Oliveri, P.F. Sammartino, MIMO radar and ground-based SAR imaging systems equivalent approaches for remote sensing. IEEE Trans. Geosci. Remote Sens. 51, 425-435 (2013) · doi:10.1109/TGRS.2012.2199120
[35] H. Wang, G. Liao, Y. Wang, X. Liu, On parameter identifiability of MIMO radar with waveform diversity. Signal Process. 91, 2057-2063 (2011) · Zbl 1217.94069 · doi:10.1016/j.sigpro.2011.03.012
[36] H. Wang, G. Liao, J. Li, H. Lv, Waveform optimization for MIMO-STAP to improve the detection performance. Signal Process. 91, 2690-2696 (2011) · Zbl 1223.94011 · doi:10.1016/j.sigpro.2011.06.005
[37] W. Wang, Phased-MIMO radar with frequency diversity for range-dependent beamforming. IEEE Sens. J. 13, 1320-1328 (2013) · doi:10.1109/JSEN.2012.2232909
[38] Y. Wang, X. Wang, H. Liu, Z. Luo, On the design of constant modulus probing signals for MIMO radar. IEEE Trans. Signal Process. 60, 4432-4438 (2012) · Zbl 1393.94482 · doi:10.1109/TSP.2012.2197615
[39] L. Xu, J. Li, P. Stoica, Adaptive Techniques for MIMO Radar. in The 4th IEEE Workshop on Sensor Array and Multi-Channel Processing (Waltham, MA, 2006)
[40] Y. Yang, R. Blum, MIMO radar waveform design based on mutual information and minimum mean-square error estimation. IEEE Trans. Aerosp. Electron. Syst. 43, 330-343 (2007) · doi:10.1109/TAES.2007.357137
[41] Y. Yang, R. Blum, Minimax robust MIMO radar waveform design. IEEE J. Sel. Top. Signal Process. 1, 147-155 (2007) · doi:10.1109/JSTSP.2007.897056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.